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1 Introduction 

1.1 Why Automatic Control ? 

Automatic control of many day to day tasks relieves the human beings from performing repetitive 
manual operations. Automatic control allows optimal performance ,of dynamic systems, increases 
productivity enormously, removes drudgery of performing same task again and again. Imagine manual 
control of a simple room heating system. If the room temperature is to be maintained at a desired 
temperature TOe, by controlling the current in an electrical heating system, the current may be 
adjusted by moving the variable arm in a rheostat. The temperature of the room depends on a host of 
factors : number of persons in the room, the opening and closing of doors due to persons moving in 
and out, fluctuation ~n the supply voltage etc. A human operator has to continuously monitor the 
temperature indicated by a thermometer and keep on adjusting the rheostat to maintain the temperature 
all the twenty four hours. The operator should be continuously alert and relentlessly perform a simple 
job of moving the arm of the rheostat. Any mistake on his part may result in great discomfiture to the 
persons in the room. 

Now, imagine the same operation of measuring the temperature, estimating the error between 
the desired temperature and the actual temperature, moving the arm of the rheostat accurately by 
an automatic controller. Since error. between the actual temperature and the desired temperature 
is continuously obtained and used to activate the controller, any disturbances caused due to 
movements of persons occupying the room, supply variations etc. will be automatically taken 
care of. How much of a relief it is ! This is only a simple task, but many complex industrial 
processes, space craft systems, missile guidance systems, robotic systems, numerical control 
of machine tools employ automatic control systems. There is no field in engineering where 
automatic control is not employed. Even human system is a very complex automatic feedback 
control system. The modem engineers and scientists must, therefore, have a thorough knowledge 
of the principles of automatic control systems. 
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The first automatic control was invented by James Watt. He employed a centrifugal or fly ball 

governor for the speed control of a steam engine in 1770. But much of the advances had to wait for 

more than a hundred years, until Minorsky, Hazen and Nyquist contributed significantly in the 

development of control system theory. Hazen coined the word "servo mechanisms" to describe feedback 

control systems in which the variable to be controlled is a mechanical position, velocity or acceleration 

of a given object. During 1940s, frequency response methods and root 'locus techniques were developed 

to design linear, stable, closed loop control systems with given performance measures. In later part 

of 1950s, much emphasis was given in designing systems, which not only satisfied given performance 

measures, but also provided optimum design in a given sense. As the systems became more and more 

complex with more number of inputs and outputs and with the advent of digital computers, modern 

control theory r~\lerted back to methods based on time domain analysis and synthesis using state 

variable representations. 

In the period between 1960 and 1980, to cope up with the complexity and stringent requirements 

on accuracy, speed and cost adaptive control was developed. Both deterministic and stochastic systems 

were considered and controllers were designed which were optimal, adaptive and robust. The principles 

developed in automatic control theory were not only used in engineering applications, but also in non 

engineering systems like economic, socio economic systems and biological systems. 

1.2 Open Loop and Closed Loop Control Systems 

Open Loop Control Systems: A system in which the output has no effect on the control action is 

known as an open loop control system. For a given input the system produces a certain output. If 

there are any disturbances, the out put changes and there is no adjustment of the input to bring back 

the output to the original value. A perfect calibration is required to get good accuracy and the system 

should be free from any external disturbances. No measurements are made at the output. 

A traffic control system is a good example of an open loop system. The signals change according 

to a preset time and are not affected by the density of traffic on any road. A washing machine is 

another example of an open loop control system. The quality of wash is not measured; every cycle 

like wash, rinse and dry' cycle goes according to a preset timing. 

Closed Loop Control Systems: These are also known as feedback control systems. A system which 

maintains a prescribed relationship between the controlled variable and the reference input, and uses 

the difference between them as a signal to activate the control, is known as a feedback control 

system. The output or the controlled variable is measured and compared with the reference input and 

an error signal is generated. This is the activating signal to the controller which, by its action, tries to 

reduce the error. Thus the controlled variable is continuously fedback and compared with the input 

signal. If the error is reduced to zero, the output is the desired output and is equal to the reference 

input signal. 
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1.3 Open Loop Vs Closed Loop Control Systems 

The open loop systems are simple and easier to build. Stability, which will be discussed in later 
chapters, is not a problem. Open loop systems are cheaper and they should be preferred whenever 
there is a fixed relationship between the input and the output and there are no disturbances. Accuracy 
is not critical in such systems. 

Closed loop systems are more complex, use more number of elements to build and are costly. The 
stability is a major concern for closed loop systems. We have to ensure that the system is stable and 
will not cause undesirable oscillations in the output. The major advantage of closed loop system is 
that it is insensitive to external disturbances and variations in parameters. Comparatively cheaper 
components can be used to build these systems, as accuracy and tolerance do not affect the 
performance. Maintenance of closed loop systems is more difficult than open loop systems. Overall 
gain of the system is also reduced. 

Open Loop Systems 

Advantages 

1. They are simple and easy to build. 

2. They are cheaper, as they use less number of components to build. 

3. They are usually stable. 

4. Maintenance is easy. 

Disadvantages 

1. They are less accurate. 

2. If external disturbances are present, output differs significantly from the desired value. 

3. If there are variations in the parameters of the system, the output changes. 

Closed Loop Systems 

Advantages 

1. They are more accurate. 

2. The effect of external disturbance signals can be made very small. 

3. The variations in parameters of the system do not affect the output of the system i.e. the 
output may be made less sensitive to variation is parameters. Hence forward path components 
can be of less precision. This reduces the cost of the system. 

4. Speed of the response can be greatly increased. 

Disadvantages 

1. They are more complex and expensive 

2. They require higher forward path gains. 

3. The systems are prone to instability. Oscillations in the output many occur. 

4. Cost of maintenance is high. 
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1.4 Feedback Control Systems 
Fig. 1.1 represents a feedback control system. 

Controller 
Reference 

input 
r------------, 
I + e(t) 

------~~ ~--------~ 
or r(t) I -

Command I 
signal 

error or 
actuating I 

signal _________ --1 

Feedback b(t) 
signal 

Fig. 1.1 A feedback control system 

Manipulating signal 

Controlled output 

c(t) 

A feedback control system is represented as an interconnection of blocks characterized by an 
input output relation. This method of representing a control system is known as a block diagram 
representation. While other methods are also used to represent the control system, this is more 
popular. The input to the entire system is called as a reference input or a command input, ret). 
An error detector senses the difference between the reference input and the feedback signal equal to 
or proportional to the controlled output. The feedback elements measure the controlled output and 
convert or transfonn it to a suitable value so that it can be compared with the reference input. If the 
feedback signal, bet), is equal to the controlled output, c(t), the feedback system is called as unity 
feedback system. 

The difference between the reference input and the feedback signal is known as the error signal or 
actuating signal e(t), This signal is the input to the control elements which produce a signal known as 
manipulated variable, u(t). This signal manipulates the system or plant dynamics so that the desired 
output is obtained. The controller acts until the error between the output variable and the reference 
input is zero. If the feedback path is absent, the system becomes an open loop control system and is 
represented in Fig. 1.2. 

Input I I u(t) ~I Plant I Outpu.:. c(t) 
r(t) ----I.~ Controller .... . ... 

Fig. 1.2 Open loop control system 

1.5 Classification of Control Systems 
Depending on the type of signals present at the various parts of a feedback control system, the 
system may be classified as a (i) continuous time feedback control system or a (ii) discrete time 
feedback control system. 
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1.5.1 Continuous Time Feedback Control Systems 

If the signals in all parts ofa control system are continuous functions of time, the system is classified 
as continuous time feedback control system. Typically all control signals are of low frequency and if 
these signals are unmodulated, the system is known as a d.c. control system. These systems use 
potentiometers as error detectors, d.c amplifiers to amplify the error signal, d.c. servo motor as 
actuating device and d.c tachometers or potentiometers as feedback elements. If the control signal is 
modulated by an a.c carrier wave, the resulting system is usually referred to as an a.c control system. 
These systems frequently use synchros as error detectors and modulators of error signal, a.c amplifiers 
to amplify the error signal and a.c servo motors as actuators. These motors also serve as demodulators 
and produce an unmodulated output signal. 

1.5.2 Discrete Data Feedback Control Systems 

Discrete data control systems are those systems in which at one or more pans of the feedback 
control system, the signal is in the form of pulses. Usually, the error in such system is sampled at 
uniform rate and the resulting pulses are fed to the control system. In most sampled data control 
systems, the signal is reconstructed as a continuous signal, using a device called 'hold device'. Holds 
of different orders are employed, but the most common hold device is a zero order hold. It holds the 
signal value constant, at a value equal to the amplitude of the input time function at that sampling 
instant, until the next sampling instant. A typical discrete data control system is shown in Fig. 1.3 
which uses a sampler and a data hold. 

ret) c(t) 

Sampler 

Fig. 1.3 Discrete data control system 

These systems are also known as sampled data control systems. 

Discreet data control systems, in which a digital computer is used as one of the elements, are 
known as digital control systems. The input and output to the digital computer must be binary numbers 
and hence these systems require the use of digital to analog and analog to digital converters. A typical 
digital control system is shown in Fig. 1.4. 

c(t) 

Fig. 1.4 Digital feedback control system 

Digital devices may be employed in the feedback circuits as measuring elements. 
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A further classification of control systems can be made depending on the nature of the systems, 
namely, 

1. Linear control systems 

2. Non-linear control systems 

1.5.3 Linear Control Systems 

If a system obeys superposition principle, the system is said to be a linear system. Let xl (t) and x2(t) 
be two inputs to a system and Yl(t) and Yit) be the corresponding outputs. For arbitrary real constants 
kl and~, and for input kl xl(t) + ~ x2(t), if the output of the system is given by kl Yl(t) + k2 Y2(t), 
then the system is said to be a linear system. There are several simple techniques available for the 
analysis and design of linear control systems. 

1.5.4 Non-Linear Control Systems 

Any system which does not obey superposition principle is said to be a non-linear system. Physical 
systems are in general non-lienar and analysis of such systems is very complicated. Hence these 
systems are usually linearlised and well known linear techniques are used to analyse them. 

These systems can be further classified depending on whether the parameters of the system are 
constants, or varying with respect to time. When the input to a system is delayed by T seconds, if the 
output is also delayed by the same time T, the system is said to be a time invariant system. Thus 

x(t) __ ..J~~ System 1----.. y(t) x (t- T) ----.!~ System 1----.. Y (t-' T) 

(a) (b) 

Fig. 1.5 Time invariant system. 

On the other hand, if the output is dependent on the time of application of the input, the system is 
said to be a time varying system. Like non-linear systems, time varying systems also are more 
complicated for analysis. In this text we will be dealing with linear time invariant continuous systems 
only. 

The layout of this book is as follows: 

The mathematical modelling of processes suitable for analysis and design of controllers is discussed 
in Chapter 2. Typical examples from electrical, mechanical, pneumatic and hydraulic systems are 
given. The transfer function of the overall system is obtained by block diagram and signal flow graph 
representation of the systems. The effects of feedback on the performance of the system are also 
discussed. . 

In chapter 3, time domain specifications of the control system are defined with respect to the 
response of a typical second order system, for unit step input. Steady state errors are defined and the 
use of PID controllers is discussed to satisfy the design specifications of a control system. In chapter 
4, the stability aspects of the system are discussed and algebraic criteria for obtaining the stability of 
the system are developed. 
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The roots of the characteristic equation of the system determine the behaviour and stability of a 
control system. The roots change as the parameters are changed. The concept of the locus of these 
roots as one of the parameters, usually the gain of the amplifier, is changed from 0 to 00 is discussed 
in chapter 5. The design of a control system is rendered very easy by considering the response of the 
system to sinusoidal signals. Frequency domain analysis and development of frequency domain 
specifications are discussed in chapter 6. 

Relative stability aspects are considered in chapter 7. Nyquist stability criterion is developed and 
measures of relative stability, viz, gain margin on phase margin are dermed. 

In chapter 8, design of compensating RC networks to satisfy the design specifications of a control 
system in frequency domain is discussed. In chapter 9, state space representation of control systems 
is developed, which enables modern techniques to be used in the design of control systems. 

-~-



2 Mathematical Modelling of 
Physical Systems 

2.1 Introduction 

Whenever a task is to be performed, a set of physical objects are connected together and a suitable 
input is given to them, to obtain the desired output. This group of objects is usually termed as the 
'system'. The system may consist of physical objects and it may contain components, biological 
economical or managerial in nature. In order to analyse, design or synthesise a complex system, a 
physical model has to be obtained. This physical model may be a simplified version of the more 
complex system. Certain assumptions are made to describe the nature of the system. Usually all 
physical systems in the world are nonlinear in nature. But under certain conditions these systems may 
be approximated by linear systems. Hence for certain purposes, a linear model may be adequate. But 
if stringent accuracy conditions are to be satisfied, linear model may not be suitable. Similarly, the 
parameters of the system may be functions of time. But if they are varying very slowly, they may be 
assumed to be constant. In many engineering systems the elements are considered to be lumped and 
their behaviour is described by considering the effect at its end points called terminals. Long lines 
transmitting electrical signals, may not be adequately represented by lumped elements. A distributed 
parameter representation may be called for in this case. Hence depending on the requirements of a 
given job, suitable assumptions have to be made and a 'physical model' has to be first defined. The 
behaviour of this physical model is then described in terms of a mathematica~ model so that known 
techniques of mathematical analysis can be applied to the given system. 

2.2 Mathematical Models of Physical Systems 

The system may be considered to be consisting of an inter connection of smaller components or 
elements, whose behaviour can be described by means of mathematical equations or relationships. 
In this book, we will be considering systems made up of elements which are linear, lumped and 
time invariant. An element is said to be linear if it obeys the principle of super position 
and homogeneity. If the responses of the element for inputs xj(t) and xit) are Yj(t) and Yit) 
respectively, the element is linear if the response to the input, k j xj(t) + Is xit) is k j Yj(t) + Is Y2(t) 
as shown in Fig. 2.1. 
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x,(t) I • • LInear element 

Fig. 2.1 Definition of linear element 

An element is said to be 'lumped' if the physical dimensions or spacial distribution of the element 
does not alter the signal passing through it. The behaviour of such elements are adequately represented 
by the effects at the end points called terminals. The temperature of a body may be treated as same, 
at all points of the body under certain conditions. Similarly the mass of a body may be considered as 
concentrated at a point. A rotating shaft may be considered as rigid. An electrical resistor may be 
represented by a lumped element, since the current entering at one terminal leaves the other terminal 
without undergoing any change. The voltage distribution in the physical body of the resistor is not 
considered. Only the voltage across its terminals is taken for analysis. These are some examples of 
lumped elements. 

If the parameters representing the elements are not changing with respect to time, the element is 
said to be time invariant. Thus if a system is composed of linear, lumped and time invariant 
elements, its behaviour can be modelled by either linear algebraic equations or linear differential 
equations with constant coefficients. If the input output relations are algebraic, the system is said to 
be a static system. On the other hand, if the relations are described by differential equations, the 
system is said to be a dynamic system. We are mostly concerned with dynamic response of the 
systems and therefore, one ofthe ways by which a system is mathematically modelled is by differential 
equations. Another most useful and common mathematical model is the Transfer function' of the 
system. It is defined as the ratio of Laplace transform of the output to the Laplace transform of the 
input. This is illustrated in Fig. 2.2. 

R (s) .LI __ T_(_S )_---If---
C-(.!) 

Fig. 2.2 Transfer function of a system 

In Fig. 2.2, the transfer function is, 

C(s) 
T(s) = R(s) ..... (2.1) 

In defining the transfer function, it is assumed that all initial conditions in the system are zero. 

Having defined the two common ways of describing linear systems, let us obtain the 
mathematical models of some commonly occuring Electrical, Mechanical, Thermal, Fluid, Hydraulic 
systems etc. 

2.2.1 Electrical Systems 

Most of the electrical systems can be modelled by three basic elements : Resistor, inductor, and 
capacitor. Circuits consisting of these three elements are analysed by using Kirchhoff's Voltage law 
and Current law. 
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(a) Resistor: The circuit model of resistor is shown in Fig. 2.3 (a) 

i(t) R 

?~. WJ.Nv-~ 

~~----- v(t) ----~J 
Fig. 2.3(a) Circuit model of resistor 

The mathematical model is given by the Ohm's law relationship, 

vet) = i(t) R; i(t) = vet) 
R 

(b) Inductor: The circuit representation is shown in Fig. 2.3 (b) 

Fig. 2.3(b) Circuit model of inductor 

The input output relations are given by Faraday's law, 

or 

( ) - L diet) vt - --
dt 

I 
i(t) = - Jvdt 

L 

where J v dt is known as the flux linkages 'Y (t). Thus 

'Y(t) 
i(t) = -

L 

Control Systems 

..... (2.2) 

..... (2.3) 

..... (2.4) 

..... (2.5) 

If only a single coil is considered, the inductance is known as self inductance. If a voltage is 
induced in a as second coil due to a current in the first coil, the voltage is said to be due to mutual 
inductance, as shown in Fig. 2.3(c). 

+ • • + 

Fig. 2.3(c) Mutual inductance 
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In Fig. 2.3(c), 
di 

v (t) = M _1 
2 dt 

(c) Capacitor: The circuit symbol of a capacitor is given in Fig. 2.3 (d). 

~~ 
L-V(t)---J 

Fig. 2.3(d) Circuit symbol of a capacitor 

vet) = ~ fidt 
C 

or 
dv 

i(t) = C -
dt 
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..... (2.6) 

..... (2.7) 

..... (2.8) 

In eqn. (2.7), S idt is known as the charge on the capacitor and is denoted by 'q'. Thus 

q = Sidt ..... (2.9) 

q(t) 
and vet) = C ..... (2.10) 

Another useful element, frequently used in electrical circuits, is the ideal transformer indicated 
in Fig. 2.4. 

+ • • 

Fig. 2.4 Model of a transformer 

The mathematical model of a transformer is given by, 

V2 = N2 = .!.L 
VI NI 12 

+ 

.... (2.11) 

Electrical networks consisting of the above elements are analysed using Kirchhoff's laws. 

Example 2.1 

Consider the network in Fig. 2.5. Obtain the relation between the applied voltage and the current 
in the form of (a) Differential equation (b) Transfer function 

i 

v~' :£}c 
Fig. 2.5 An R. L. C series circuit excited by a voltage source. 
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Solution: 

(a) Writing down the Kirchhoff's voltage law equation for the loop, we have 

diet) 1 t 
R i(t) + L -- + - f i (t) dt = v 

dt C -00 
..... (2.12) 

t 
Denoting f i(t) d(t) by q(t), we can also write eqn. (2.8) as 

-00 

L d
2
q(t) + R dq(t) + q(t) = v 

dt2 dt C 
..... (2.13) 

This is a 2nd order linear differential equation with constant coefficients. 

(b) Transfer function 

Taking Laplace transform of eqn. (2.13) with all initial conditions assumed to be zero, we have 

1 
Ls2 Q(s) + Rs Q(s) + C Q(s) = Yes) 

Q(s) C 

Yes) Ls+Rs+l LCs2 +RCs+l 
C 

..... (2.14) 

.... (2.15) 

This is the transfer function of the system, if q(t) is considered as output. Instead, if i(t) is 
considered as the output, taking Laplace transform of eqn. (2.12), we have, 

Example 2.2 

I(s) 
R I(s) + Ls I(s) + Cs = Yes) 

I(s) Cs =----,-=----;;;----
yes) Ls + R + _1 LCs2 + RCs + 1 

Cs 

..... (2.16) 

..... (2.17) 

Consider the parallel RLC network excited by a current source (Fig. 2.6). Find the (a) differential 
equation representation and (b) transfer function representation of the system. 

vet) 

i(t) i c 

Fig. 2.6 Parallel RLC circuit excited by a current source 
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Solution: 

(a) Applying Kirchhoff's current law at the node, 

vet) Cdv(t) 1 . 
-+--+- Jvdt =: let) 

R dt L 

Replacing J v dt by qJ(t), the flux linkages, we have, 

C d
2 ~ (t) +~ d\jf(t) + \jf(t) =: i(t) 

dt R dt L 

(b) Taking Laplace transform of eqn. (2.19), we have, 

Cs2 qJ(s) + .l s qJ(s) + ~ (t) =: I(s) 
R L 

qJ(s) 

I(s) 2 S 1 
Cs +-+-

R L 

L 

LCs 2 +LGs+l 

13 

..... (2.18) 

..... (2.19) 

..... (2.20) 

If the voltage is taken as the output, taking Laplace transform of eqn. (2.18), we get 

1 
GV(s) + CsV(s) + Ls Yes) =: I(s) 

Yes) = ---- = -----Ls ..... (2.21 ) 

I(s) Cs +G + _1 LCs2 +LGs+ 1 
Ls 

Example 2.3 

Obtain the transfer function I(s)N(s) in the network of Fig. 2.7. 

Fig. 2.7 Network for the Example 2.3 
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Solution: 

Writing the loop equations 

(3 + s) 11(s) 

- (2 + s) 11(s) 

Solving for I(s), we have 

- (s + 2) 12 (s) 

+ (3 + 2s) 12 (s) - s.l(s) 

3+s -(s + 2) yes) 

- (2 +s) (3 + 2s) 0 

0 -s 0 
I(s) = 

, 
3+s -(s + 2) 0 

- (2+s) (3 + 2s) -s 

0 -s (1+2S+ ;s) 

Yes) [s(s + 2)] 

s(s + 2) V(s).2s 
I(s) - ----'-:----'--:;-'--'-----;:---­

- -(s+3)(4s4 + 12s3 +9s2 +4s+1) 

I(s) _ 2S2(S+2) 

Yes) -- (s+3)(4s4 + 12s3 t9s2 +4s+1) 

2.2.2 Dual Networks 

= Yes) 

=0 

Control Systems 

..... (1) 

..... (2) 

..... (3) 

Consider the two networks shown in Fig. 2.5 and Fig. 2.6 and eqns. (2.13) and (2.19). In eqn. (2.13) 
if the variables q and v and circuit constant RLC are replaced by their dual quantities as per Table 2.1 
eqn. (2.19) results. 

Table 2.1 Dual Quantities 

vet) B i(t) 

i(t) B vet) 

1 
R B -=G 

R 
C B L 

L B C 

q = fidt B 'l' = fvdt 
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The two networks, are entirely dissimilar topologically, but their equations are identical. If the 
solution of one equation is known, the solution of the other is also known. 

Thus the two networks in Fig. 2.5 and 2.6 are known as dual networks. Given any planar 
network, a dual network can always be obtained using Table 2.1. 

2.2.3 Mechanical Systems 

Mechanical systems can be divided into two basic systems. 

(a) Translational systems and (b) Rotational systems 

We will consider these two systems separately and describe these systems in terms of three 
fundamental linear elements. 

(a) Translational systems: 

1. Mass: This represents an element which resists the motion due to inertia. According to 
Newton's second law of motion, the inertia force is equal to mass times acceleration. 

dv d2x 
f, =Ma=M.- =M-
M ~ ~2 

..... (2.22) 

Where a, v and x denote acceleration, velocity and displacement of the body respectively. 
Symbolically, this element is represented by a block as shown in Fig. 2.8(a). 

(a) (b) (c) 

Fig. 2.8 Passive linear elements of translational motion (a) Mass (b) Dash pot (c) Spring. 

2. Dash pot: This is an element which opposes motion due to friction. If the friction is viscous 
friction, the frictional force is proportional to velocity. This force is also known as damp ling 
force. Thus we can write 

dx 
f =Bv=B-
B dt 

..... (2.23) 

Where B is the damping coefficient. This element is called as dash pot and is symbolically 
represented as in Fig. 2.8(b). 

3. Spring: The third element which opposes motion is the spring. The restoring force of a spring 
is proportional to the displacement. Thus 

fK = K x ..... (2.24) 

Where K is known as the stiffness of the spring or simply spring constant. The symbol used 
for this element is shown in Fig. 2.8(c). 
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(b) Rotational systems: Corresponding to the three basic elements of translation systems, there are 
three basic elements representing rotational systems. 

1. Moment of Inertia: This element opposes the rotational motion due to Moment oflnertia. The 
opposing inertia torque is given by, 

dro d2e 
T =Ja=J - =J-

I dt dt2 ..... (2.25) 

Where a, OJ and () are the angular acceleration, angular velocity and angular displacement 
respectively. J is known as the moment of inertia of the body. 

2. Friction: The damping or frictional torque which opposes the rotational motion is given by, 

de 
T =Bro=B-

B dt 

Where B is the rotational frictional coefficient. 

..... (2.26) 

3. Spring: The restoring torque of a spring is proportional to the angular displacement () and is 
given by, 

..... (2.27) 

Where K is the torsimal stiffness of the spring. The three elements defined above are shown 
in Fig. 2.9. 

J 

Fig. 2.9 Rotational elements 

Since the three elements ofrotational systems are similar in nature to those of translational systems 
no separate symbols are necessary to represent these elements. 

Having defined the basic elements of mechanical systems, we must now be able to write differential 
equations for the system when these mechanical systems are subjected to external forces. This is 
done by using the D' Alembert's principle which is similar to the Kirchhoff's laws in Electrical 
Networks. Also, this principle is a modified version of Newton's second law of motion. The 
D' Alembert's principle states that, 

"For any body, the algebraic sum of externally applied forces and the forces opposing the motion 
in any given direction is zero". 

To apply this principle to any body, a reference direction of motion is first chosen. All forces 
acting in this direction are taken positive and those against this direction are taken as negative. Let us 
apply this principle to a mechanical translation system shown in Fig. 2.10. 

A mass M is fixed to a wall with a spring K and the mass moves on the floor with a viscous 
friction. An external force f is applied to the mass. Let us obtain the differential equation governing 
the motion of the body. 
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x 

f 

Fig. 2.10 A mechanical translational system 

Let us take a reference direction of motion of the body from left to right. Let the displacement of 
the mass be x. We assume that the mass is a rigid body, ie, every particle in the body has the same 
displacement, x. Let us enumerate the forces acting on the body. 

( a) external force = f 

(b) resisting forces : 

(i) Inertia force, fM = _ M d2~ 
dt 

dx 
(ii) Damping force, fB = - B dt 
(iii) Spring force, fK = - Kx 

Resisting forces are taken to be negative because they act in a direction opposite to the chosen 
reference direction. Thus, using D' Alemberts principle we have, 

f-M d
2
x_ B dx -Kx 

dt2 dt 
=0 

d2x dx 
M-+B-+Kx =f 

dt 2 dt 
or ..... (2.28) 

This is the differential equation governing the motion of the mechanical translation system. The 
transfer function can be easily obtained by taking Laplace transform of eqn (2.28). Thus, 

Xes) 
--=-~---

F(s) MS2 + Bs+ K 

If velocity is chosen as the output variable, we can write eqn. (2.28) as 

du 
M - + Bu + K Iu dt = f 

dt 
..... (2.29) 

Similarly, the differential equation governing the motion of rotational system can also be obtained. 
For the system in Fig. 2. I 1, we have 

d2e de 
J -2 + B-+ Ke = T ..... (2.30) 

dt dt 
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The transfer function of this system is given by 

9(s) 
--=-----
T(s) Js2 +Bs+K 

Control Systems 

J 

Fig. 2.11 Mechanical rotatinal system 

Since eqn. (2.28) and eqn. (2.30) are similar, if the solution of one system is known, the solution 
for the other system can be easily obtained. Such systems are known as analogous systems. Further, 
the eqns. (2.15) and (2.19) of the electrical systems shown in Fig. 2.5 and 2.6 are similar to 
eqns. (2.28) and (2.30) of mechanical systems of Figures 2.10 and 2.11. Hence the electrical systems 
in Figures 2.5 and 2.6 are also analogous to mechanical systems in Figures 2.1 0 and 2.11. 

2.2.4 Analogous Systems 

Analogous systems have the same type of equations even though they have different physical 
appearance. Mechanical systems, fluid systems, temperature systems etc. may be governed by the 
same types of equations as that of electrical circuits. In such cases we call these systems as analogous 
systems. A set of convenient symbols are already developed in electrical engineering which permits a 
complex system to be represented by a circuit diagram. The equations can be written down easily for 
these circuits and the behaviour of these circuits obtained. Thus if an analogous electrical circuit is 
visualised for a given mechanical system, it is easy to predict the behaviour of the system using the 
well developed mathematical tools of electrical engineering. Designing and constructing a model is 
easier in electrical systems. The system can be built up with cheap elements, the values of the 
elements can be changed with ease and experimentation is easy with electrical circuits. Once a circuit 
is designed with the required characteristics, it can be readily translated into a mechanical system. It 
is not only true for mechanical systems but also several other systems like acoustical, thermal, fluid 
and even economic systems. 

The analogous electrical and mechanical quantities are tabulated in Table 2.2. 

Table 2.2 Analogous quantities based on force voltage analogy 

Electrical system Mechanical system 
Translational Rotational 

Voltage V Force f Torque T 
Current i Velocity u angular velocity (j) 

Charge q Displacement x angular displacement 9 
Inductance L Mass M Moment ofInertia J 

1 1 
Capacitance C Compliance - Compliance -

K K 
Resistance R Damping coefficient B Damping coefficient B 
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Comparing the eqn. (2.15) of the electrical system and eqn. (2.28) and eqn. (2.30) of mechanical 
systems it is easy to see the correspondence of the various quantities in Table 2.2. Since the external 
force applied to mechanical system, fl' is made analogous to the voltage applied to the electrical 
circuit, this is called as Force - Voltage analogy. 

If the mechanical systems are compared with the electrical circuit in Fig. 2.6, in which the 
source is a current source, force applied in mechanical system is analogous to the current. The 
analogous quantities based on force-current analogy are given in Table 2.3 

The Table 2.3 can be easily understood by comparing eqn. (2.19) of the electrical system with 
eqns. (2.28) and (2.30) of mechanical systems. 

Table 2.3 Analogous quantities based on Force - Current analogy 

Electrical system Mechanical system 
Translational Rotational 

Current i Force f Torque T 

Voltage v Velocity u angular velocity (0 

Flux linkages 'I' Displacement x angular displacement e 
Capacitance C Mass M Moment of Inertia J 

Conductance G Damping coefficient B Rotational Damping coefficient B 

I 1 
Inductance L Compliance - Compliance -

K K 

Now let us consider some examples of mechanical systems and construct their 
mathematical models. 

Example 2.4 

Write the equations describing the motion of the mechanical system shown in Fig. 2.12. 

Also find the transfer function Xj(s)lF(s). 

Fig. 2.12 A Mechanical system for example 2.4 

Solution: 

The first step is to identify the displacements of masses M j and M2 as Xj and x2 in the direction of the 
applied external force! Next we write the equilibrium equation for each of the masses by identifying 
the forces acting on them. Let us first find out the forces acting on mass M j • 
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External force = f 

Restoring forces : 

d2x 
(i) Inertia forc.e, - Ml -2-1 

dt 

( .. ) . fi d
2

(XI -X2) 
11 Dampmg orce, - Bl 2 

dt 
(iii) Spring force, - Kl (xl - x2) 

(If xl > x2 the spring expands and restoring force is upwards) 

Control Systems 

(Note: Since top end of dash pot and spring are rigidly connected to mass M2, their displacement 
is x2 in the downward direction. Similarly, the bottom ends of dash pot spring are rigidly 
connected the mass Ml' they move downward by Xl' The relative displacement of the lower 

end_upper end is (x l -x2) in the downward direction. Hence restoring forces are-Bl d (XI - x 2) 
dt 

and - Kl (xl - x2) respectively due to the dash pot and spring). 

Hence the equation of motion is 

Now for mass M2 

External force = Zero 

Restoring forces : 

d2 x 
(i) Inertia force, - M2 -2_2 

dt 

..... (1) 

(li) Damping forces, 

dX 2 (a) - B2 dt (since one end is fixed and the other is connected to Ml rigidly) 

(b) - B • d(x2 - XI) (If dx2 > dXI , the motion is in the downward direction and 
1 dt dt dt 

(iii) Spring forces : 

(a) - K2 x2 

the frictional force is in the upward direction) 

(b) - Kl (Xz - Xl) (If Xz > Xl' the spring is compressed and the restoring force 
is upward) 
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Hence the equation of motion for M2 is, 

d2 x 2 dX2 d(x2 - Xl) 
M2 ~+B2~+BI dt +K2X2+KI(X2-XI) =0 .... (2) 

From eqns. (l) & (2), force voltage analogous electrical circuits can be drawn as shown in Fig. 2.13 (a). 

v[t] 

Fig. 2.13 (a) Force - Voltage analogous circuit for mechanical system of Fig. 2.12. Mechanical quantities 
are shown in parenthesis 

Force - current analogous circuit can also be developed for the given mechanical system. It is 
given in Fig. 2.13 (b). Note that since the mass is represented by a capacitance and voltage is 
analogous to velocity, one end of the capacitor must always be grounded so that its velocity is always 
referred with respect to the earth. 

XI(s) 
=--

F(s) 
Transfer function 

Taking Laplace transform of eqns. (1) and (2) and assuming zero initial conditions, we have 

MI s2 XI (s) + BI s [XI (s) - X2 (s)] + KI [XI(s) - X2 (s)] = F(s) 

or (M I s2 + Bls + KI) XI (s) - (B I S + K I) X2 (s) = F(s) ..... (3) 

and M2 s2 X2 (s) + B2 s X2(s) + BI s [Xis) - XI(s)] + K2 X2 (s) 

+ KI [(~ (s) - XI(s)] = 0 

or - (Bls + K I) XI(s) + [M2 s2 + (B2 + BI)s + (K2 + KI) Xis) = 0 ..... (4) 

Fig. 2.13 (b) Force current analogous circuit for the mechanical system of Fig. 2.12 
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Solving for Xis) in eqn (4), we get 

Bjs+Kj X () 
Xis) = M2 S2 +(Bj + B2)s+(Kj + K2) j s 

Substituting for Xis) in eqn. (3) 

(M/+Bjs+Kj)Xj(s)- (~jS+Kj).(BjS+Kj) Xj(s) =F(s) 
M2s +(Bj +B2)s+Kj +K2 

Xj(s) = M 2s2 +(Bj +B2)S+Kj +K2 F(s) 
M jS2 + Bj s+Kj M2 S2 +(Bj + B2)s+(Kj + K 2) -(Bj S+Kj)2 

Thus 
Xj(s) M 2s2 +(Bj +B2}s+Kj +K2 

T(s) = F(s) = (Mj s2 +BjS+Kj)[M2s2 +(Bj +B2)S+(Kj +K2 )J-(Bjs+Kj)2 

Which is the desired transfer function. 

Example 2.5 

Obtain the f-v and f-i analogous circuits for the mechanical system shown in Fig. 2.14. Also 
write down the equilibrium equations. 

Fig. 2.14 Mechanical system for Ex. 2.5 

Solution: 

Let f be the force acting on the spring instead of velocity u. The displacements are indicated in the 
figure. 

The equilibrium equations are: 

K (Xj -~) = f 

B ("2 - '(3) + K (X2 - Xj) = 0 

B ("3 - '(2) + M X3= 0 

From eqs (1) and (2), we have 

B ("2 - '(3) = f 
From eqs (3) and (4), we have 

MX3 =f 

..... (1) 

..... (2) 

..... (3) 

..... (4) 

..... (5) 
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Force Current Analogous Circuit 

Replacing the electrical quantities in equations (1), (4), and (5) by their force-current analogous 
quantities using Table 2.3, we have 

or 

or 

or 

~f (v - v )dt = i 
L ' 2 

G (q,2 - q,3) = i 

G(V2 - V3) = i 
.. 

C 'f'3 = i 

C dV3 = i 
dt 

..... (6) 

..... (7) 

..... (8) 

If i is produced by a voltage source v, we have the electrical circuit based on f-i analogy in 
Fig. 2.14 (a). 

G[B] 
v[u] 

C[M] 

Fig. 2.14 (a) F-i analogous circuit for mechanical system in Ex. 2.5 

Force Voltage Analogous Circuit 

Using force voltage analogy, the quantities in eqs (1), (4) and (5) are replaced by the mechanical 
quantities to get, 

or 

or 

1 
-(q -q ) = v 
C ' 2 

~ f (i, - i2) dt = v 
C 

R «h -qJ = v 

R (i2 - i3) = v 

d
2
q3 

L--=v 
dt 2 

..... (9) 

..... (10) 
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or 
di3 

L-=v 
dt 

..... (11) 

If the voltage is due to a current source i, we have the force voltage analogous circuit is shown in 
Fig. 2.14 (b) 

+ 

v[f] 
R[B] L[M] 

Fig. 2.14 (b) Force voltage analogous circuit for the mechanical system of Ex. 2.5 

2.2.5 Gears 

Gears are mechanical coupling devices used for speed reduction or magnification of torque. These 
are analogous to transformers in Electrical systems. Consider two gears shown in Fig. 2.15. The first 
gear, to which torque T 1 is applied, is known as the primary gear and has N 1 teeth on it. The second 
gear, which is coupled to this gear and is driving a load, is known as the secondary gear and has N2 
teeth on it. 

Fig. 2.15 Geartrain 

The relationships between primary and secondary quantities are bas~d on the following principles. 

1. The number of teeth on the gear is proportional to the radius of the gear 

r\ N\ -=-

2. The linear distance traversed along the surface of each gear is same. 

If the angular displacements of the two gears are ()1 and 82 respectively, then 

r1 91 =r2 92 

!.L=~ 
r2 9\ 

..... (2.31) 

..... (2.32) 
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3. The work done by one gear is same as that of the other. 

If T 1 and T 2 are the torques on the two gears, 

TI 01 = T2 02 

Using eqs (2.31), (2.32) and (2.33), we have, 

°1 T2 N2 -=-=-

Recall that, for an ideal transformer of primary tums N 1 and secondary turns N2, 

VI 12 NI 
-=-= 
V2 II N2 
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..... (2.33) 

..... (2.34) 

..... (2.35) 

Eqn. (2.35) is similar to eqn. (2.34) and hence a gear train in mechanical system is analogous 
to an ideal transformer in the electrical system. 

Writing the equilibrium equations for the mechanical system of Fig. (2.14), we have 

..... (2.36) 

..... (2.37) 

Where T M is the motor torque driving the shaft of the gear, T 1 is the torque available for the 
primary gear, T2 is the torque at the secondary gear, TL is the load torque and J2 is the moment 
of inertia of secondary gear and the load. 

Using eqn. (2.34) in eqn. (2.37), we have 

..... (2.38) 

Substituting for TI in eqn. (2.36), using eqn. (2.38), 

But, 

and 

J I '91 + BI 91 + KI °1 + ~. (J2 '0'2 + B2 92 + K2 O2 + T L) = TM ..... (2.39) 
N2 

° =~O 2 N I 
2 
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Using these relations in eqn. (2.39), we get 

..... (2.40) 

Replacing 

and 

We have, 

JI eq ·e·\ + BI 9\ + K leq el + T Leq = TM ..... (2.41) 

Thus the original system in Fig. 2.15 can be replaced by an equivalent system referred to 
primary side as shown in Fig. 2.16. 

Fig. 2.16 Equivalent system refered to primary side . 
The moment of inertia J2, frictional coefficient B2 and torsional spring constant K2 of secondary 

side are represented by their equivalents referred to primary side by, 

J12 ~ J, (~: r 
B12~B, (~:r 
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The load torque referred to primary side is given by, 

_ Nl 
TLeq-TL·­

N2 
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These equations can be easily seen to be similar to the corresponding electrical quantities in the 
ideal transformer. 

All the quantities can also be referred to the secondary side of the gear. The relevant equations are 

.lzeq ·9~ + B2eq 92 + K2eq 92 + TL = T Meq ..... (2.42) 

where J2,q~J2+JI (::r B2,,~B2+BI (::J 

and 

2.2.6 Thermal Systems 

Thermal systems are those systems in which heat transfer takes place from one substance to another. 
They can be characterised by thermal resistance and capacitance, analogous to electrical resistance 
and capacitance. Thermal system is usually a non linear system and since the temperature of a 
substance is not uniform throughout the body, it is a distributed system. But for simplicity of analysis, 
the system is assumed to be linear and is represented by lumped parameters. 

(a) Thermal resistance 

There are two types of heat flow through conductors : Conduction or convection and radiation. 

Fig. 2.17 Thermal resistance 

For conduction of heat flow through a specific conductor, according to Fourier law, 

...... (2.42) 
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where, 

q = Heat flow, Joules/Sec 
K = Thermal conductivity, J/sec/m/deg k 
A = Area normal to heat flow, m2 

~X = Thickness of conductor, m 
8 = Temperature in oK 

For convection heat transfer, 

q = HA (81 - 82) 

where H = Convection coefficient, J/m~/sec/deg k 

The thermal resistance is defined by, 

d8 ~X 
R =-=-

dq KA 
(Conduction) 

HA 
(Convection) 

The unit of R is deg seclJ 

Control Systems 

..... (2.43) 

..... (2.44) 

..... (2.45) 

For radiation heat transfer, the heat flow is governed by Stefan-Boltzmann law for a surface 
receiving heat radiation from a black body: 

q = KAE (84
1 - 84

2) 

= A cr (8\ - 84
2) ..... (2.46) 

where, 

cr is a constant, 5.6697 x 10-8 J/sec/m2/K4 

K is a constant 
E is emissivity 
A is surface in m2 

The radiation resistance is given by 

d8 1 
R = -d = 3 deg sec/J ..... (2.4 7) 

q 4Acr8a 
where 8a is the average temperature of radiator and receiver. Since eqn. (2.46) is highly nonlinear, 

it can be used only for small range of temperatures. 

(b) Thermal Capacitance 

Thermal capacitance is the ability to store thermal energy. If heat is supplied to a body, its internal 
energy raises. For the system shown in Fig. 2.18, 

Fig. 2.18 Thermal CapaCitance 
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where 

where 

de 
C- =q 

dt 

C is the thennal capacitance 

C=WCp 

W ~ weight of block in kg 

Cp ~ specific heat at constant pressure in J/deg/kg 

2.2.7' Fluid Systems 
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..... (2.48) 

..... (2.49) 

Fluid systems are those systems in which liquid or gas filled tanks are connected through pipes, 
tubes, orifices, valves and other flow restricting devices. Compressibility of a fluid is an important 
property which influences the perfonnance of fluid systems. If the velocity of sound in fluids is very 
high, compared to the fluid velocity, the compressibility can be disregarded. Hence compressibility 
effects are neglected in liquid systems. However compressibility plays an important role in gas systems. 

The type offluid flow, laminar or turbulent, is another important parameter in fluid systems. If the 
Reynolds number is greater than 4000, the flow is said to be turbulent and if the Reynolds number is 
less than 2000, it is said to be laminar flow. 

For turbulent flow through pipes, orifices, valves and other flow restricting devices, the flow is 
found from Bernoulli's law and is given by 

q =KA ~2g(hl -h 2 ) ..... (2.50) 

where q ~ liquid flow rate, m3/sec 

K ~ a flow constant 

A ~ area of restriction, m2 

g is acceleration due to gravity, mlsec2 

h head of liquid, m 

The turbulent resistance is found from 

..... (2.51) 

It can be seen that the flow resistance depends on hand q and therefore it is non linear. It has to 
be linearised around the operating point and used over a small range around this point. 

The laminar flow resistance is found from the Poisseuille - Hagen law " 

128j..lL 
hi - h2 = nyD4 q ..... (2.52) 

where h ~ head, m 

L ~ length of the tube, m 

D ~ inside diameter of the pipe, m 
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q ~ liquid flow rate, m3/sec 
m ~ absolute viscosity, kg-sec/m2 

y ~ fluid density kg/m3 

Control Systems 

Since the flow is laminar, head is directly proportional to the flow rate and hence, laminar flow 
resistance is given by 

R = 128 ~ sec/m2 
1tYD4 

Liquid storage tanks are characterised by the capacitance and is defined by, 

dv 
C=- m2 

dh 

..... (2.53) 

..... (2.54) 

where v ~ volume of the liquid tank in m3. Hence the capacitance ofa tank is given by its area 
of cross section at a given liquid surface. 

Gas systems consisting of pressure vessels, connecting pipes, valves etc. may be analysed by 
using the fundamental law of flow of compressible gases. Again, we have to consider two types of 
flow: turbulent and laminar flow. For turbulent flow through pipes, orifices, valves etc., we have 

where 

0)=KAY~2g (pl -P2)Y 
0) ~ flow rate, kg/sec 

K ~ flow constant 

A ~ area of restriction, m2 

y ~ gas density, kg/m3 

p ~ pressure in kg/m2 

Turbulent gas flow resistance is therefore given by 

R= ~ sec/m2 
dw 

..... (2.55) 

..... (2.56) 

This is not easy to determine since the rational expansion factor depends on pressure. Usually the 
resistance is determined from a plot of pressure against flow rate for a given device. 

The laminar gas flow resistance is obtained using eqn. (2.50). 

P_l~ ______ ~I~rl ________ P~2 

resistance R 

Fig. 2.19 Gas resistance and capacitance 

The capacitance parameter for pressure vessels is defined as 

dv 
C =--

dp 

Capacitance C 

..... (2.57) 
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where v -+ weight of gas in vessel, kg 
p -+ pressure kg/m2 

The flow rate and the gas pressure are related by the continuity law : 

dp 
C- =0) 

dt 
Where OJ is the flow rate in kg/sec. 
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..... (2.58) 

Let us now consider some thennal and fluid systems and obtain their transfer functions. 

Example 2.6 

Find the transfer function C(s) of the thennal system shown in Fig. 2.20. Heat is supplied by 
yes) 

convection to a copper rod of diameter O. 

Fig. 2.20 Thermal System 

Solution: 

u (temperature) -.. 
Convection 

Copper rod 

C (temperature) 
4+--

The Thennal resistance of the copper rod, from eqn. (2.45), is; 

I 
R=-

HA 
Here A is the surface area of the rod. 

Hence A = 7t OL 

where L is the length of the rod. 

I 
. . R = 7t OL deg sec/J 

The thennal capacitance of the rod, from eqn. (2.49), is given by : 

C=WC p 

7t02 L 
= -4- pCp 

where, Cp is the specific heat of copper 

and p is the density of copper. 

From eqn. (2.43), we have, q = HA (u - c) and from eqn. (2.48), 

dc 
C - =q 

dt 
Combining these two equations, 

dc I 
C -=- (u-c) 

dt R 
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C dc +~=~ 
dt R R 

dc 
RC - +c=u 

dt 
where RC = T is the time constant of the system. 

dc 
T-+c=u 

dt 

1 1t02L 
T=RC= --x--pCp 1tDLH 4 

But 

= DpCp 

4H 
Thus the transfer function of the system is, 

C(s) 
--=-- where 
U(s) Ts+l 

DpCp 
T=--

4H 

Control Systems 

Example 2.7 

Obtain the transfer function C(s) for the system shown in Fig. 2.21. c is the displacement of the 
U(s) 

piston with mass M. 

u, pressure ~ 

B,damping f- M, mass 

Gas ~:Area 

Fig. 2.21 A fluid system 

Solution: The system is a combination of mechanical system with mass M, damping B and a gas 
system subjected to pressure. 

The equilibrium equation is 

Me +Bc=A[U-Pg] ..... (2.1) 

Where P g is the upward pressure exerted by the compressed gas. For a small change in displacement 
of mass, the pressure exerted is equal to, 

P 
P = - Ac 

g V 
where, P is the pressure exerted by the gas with a volume of gas under the piston to be V 

But PV= WRT 

where, R is the gas constant. 
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and T is the temperature of the gas. 

WRT 
p = ---v-

WRT 
P = --Ac 

g y2 

Substituting eqn. (2) in eqn. (1) we have, 

WRT 
Me + B c + --2- A 2c = A u 

Y 

The transfer function is, 

C(s) A 

U(s) MS2 +Bs+K 

WRT 2 
where K = -- P:. 

y2 

Example 2.8 

Obtain the transfer function for the liquid level system shown in Fig. 2.22. 

c 

Fig. 2.22 Liquid level system 

Solution: The capacitance of the vessel is C = A 

where A is the area of cross section of the vessel. 

The outflow q is equal to, 

c 
q= -

R 
where R is the laminar flow resistance of the valve. 

c 
A c = (u - q) = u - -

R 

c Ac + - = u 
R 

The transfer function is 

C(s) R 
--=---
u(s) RAs+l 

R 
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...... (2) 
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2.3 Block Diagrams of Closed Loop Systems 

The transfer function of any system can be represented by a block diagram as shown in Fig. 2.23. 

u(s) I input------l.~ G(s) 

Fig. 2.23 Block diagram of a system 

f-----I.~- C(s) 
output 

A complex system can be modelled as interconnection of number of such blocks. Inputs to certain 
blocks may be derived by summing or substracting two or more signals. The sum or difference of 
signals is indicated in the diagram by a symbol called summer, as shown in Fig. 2.24 (a). 

+ 

± 

(a) (b) 

Fig. 2.24 (a) Symbol of a summer (b) Pick off point 

On the other hand, a signal may be taken from the output of a block and given to another block. 
This point from which the signal is tapped is known as pick off point and is shown in Fig. 2.24 (b). 
A simple feedback system with the associated nomenclature of signals is shown in Fig. 2.25. 

R(s) 
+ Summer 

E(s) 

± pick off point 

B(s) 

Fig. 2.25 Simple feedback system 

C(s) 
G(s) = E(s); Forward path transfer function, or plant transfer function 

B(s) 
R(s) = E(s); Transfer function of the feedback elements 

where, R(s); Reference input or desired output 

C(s); Output or controlled variable 

B(s); Feedback signal 

E(s); Error signal 

G(s) R(s); Loop transfer function 

This closed loop system can be replaced by a single block by finding the transfer function ~~:~. 
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But 

C(s) = G(s) E(s) 

E(s) = R(s) ± B(s) 

= R(s) ± R(s) C(s) 

C(s) = G(s) [R(s) ± R(s) C(s)] 

C(s) [1 =+= G(s) R(s)] = G(s) R(s) 

C(s) G(s) 
-- = --'--'--
R(s) 1 + G(s) R(s) 

This transfer function can be represented by the single block shown in Fig. 2.26. 

R(s) --------1 .. 
ao1I1 +G~;:~(S) Ir------. .. -C(s) 

Fig. 2.26 Transfer function of the closed loop system 
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..... (2.59) 

..... (2.60) 

..... (2.61) 

..... (2.62) 

..... (2.63) 

(Note : If the feedback signal is added to the reference input the feedback is said to be positive 
feedback. On the other hand if the feedback signal is subtracted from the reference input, the feedback 
is said to be negative feedback). 

For the most common case of negative feedback, 

C(s) 

R(s) 

G(s) 

1 + G(s) R(s) ..... (2.64) 

The block diagram of a complex system can be constructed by finding the transfer functions of 
simple subsystems. The overall transfer function can be found by reducing the block diagram, using 
block diagram reduction techniques, discussed in the next section. 

2.3.1 Block Diagram Reduction Techniques 

A block diagram with several summers and pick off points can be reduced to a single block, by using 
block diagram algebra, consisting of the following rules. 

Rule 1 : Two blocks G1 and G2 in cascade can be replaced by a single block as shown in Fig. 2.27. 

Fig. 2.27 Cascade of two blocks 

Rere 
z 
- =G x I' 

r =G z 2 

z y y 
-.- = - =G G 
x z X I 2 

• y 
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Rule 2 : A summing point can be moved from right side of the block to left side of the block as shown 
in Fig. 2.28. 

X-----1~ I----.-y = X~y 

w--u}l W -------I 

Fig. 2.28 Moving a summing point to left of the block 

For the two systems to be equivalent the input and output of the system should be the same. For 
the left hand side system, we have, 

y = G [x] + W 

For the system on right side also, 

y = G [x + ~ [W]] = G [x] + w 

Rule 3: A summing point can be moved from left side of the block to right side of the block as 
shown in Fig. 2.29. 

+ 
x---.t 

+ 

y=G(x+w) 
=G[x]+G[w] 

y 

Fig. 2.29 Moving a summer to the right side of the block 

x 

Y = G[x] + G[w] 

Rule 4: A Pick off point can be moved from the right side of the block to left side of the block as 
shown in Fig. 2.30. 

x ~~ ~y 
w 

y = G[x] 
w=y 

y= G[x] 
w = G[x] = y 

Fig. 2.30 Moving a pick off point to left side of the block 

Rule 5: A Pick off point can be moved from left side of the block to the right side of the block as 
shown in Fig. 2.3 1. 

x-'~~I-~Y 
w ........ I------1-

x~ ... ----1QJ tiJ 
w ........ I-------' 

y= G[x] y=G[x] 
w=x w= i[Y]=x 

Fig. 2.31 Moving a pick off point to the right side of the block 
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Rule 6: A feedback loop can be replaced by a single block as shown in Fig 2.32. 

x 

~ x -- Y 
l+GH 

Fig. 2.32 Feedback loop is replaced by a single block 

Using these six rules. which are summerised in Table 2.4, any complex block diagram can be 
simplified to a single block with an input and output. The summing points and pick off points are 
moved to the left or right of the blocks so that we have either two blocks in cascade, which can be 
combined, or a simple feedback loop results, which can be replaced by a single block. 

This is illustrated in the following examples. 

Table 2.4 Rules of Block diagram algebra 

Rule no. Given system Equivalent system 

1. Blocks in cascade x-1 G 1 H G 2 ~Y X .. 1 G 1 G2 1 .. Y 

2. Moving summing point to left x-1 I 
+ 

w~ G .yy G Y 

w 

X~' 3. Moving summing point to right x ::f ·1 
G ~Y w G 

x-1 G I 
~ y :iJ4rl G ~y' 

w:J 4. Moving pick off point to left w G 

x 
w;J I G ~Y X~' 5. Moving pick off point to right w J.. 

G 

6. Absorbing a loop xL: [.: x-1 I+:H ~Y 
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Example 2.9 

Find the overall transfer function of the system shown in Fig. 2.33 using block diagram reduction 
technique. 

+ 
R(s)--..... -t ~---r--l"" C(s) 

Fig. 2.33 Block diagram of a system 

Solution: 

Step I : Using rule 6, the feedback loop with G2 and H2 is replaced by a single block as shown 
in Fig. 2.33 (a). 

R(s) -----1~ 

B(s) 

Fig. 2.33 (a) 

G
2 -----=-- I-----.--~~C(s) 

l+G H 
2 2 

Step 2: The two blocks in the forward path are in cascade and can be replaced using rule I as 
shown in Fig. 2.33 (b). 

+ 
R(s)---~ 

Fig. 2.33 (b) 

Step 3: Finally, the loop in Fig. 2.33 (b) is replaced by a single block using rule 6. 

G
1
G

2 

R(s) .. 1+ G2 H2 .. 
~ 

G1 G 2 H1 

~ 

1+ 

1---.----C(s) 

1+ G2H 2 
Fig. 2.33 (c) 

The transfer function can be simplified as, 
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Example: 2.10 

Obtain the overall transfer function of the system shown in Fig. 2.34 (a). 

+ 
R(s)----I ~-C(s) 

Fig. 2.34 (a) Block diagram of a system for Example 2.10 

Solution: 

Step 1 : Moving the pick off point (2) to the right of block G3 and combining blocks G2 and G3 in 
cascade, we have, 

+ 
R(s)----{ ,1--------'---.--. C(s) 

Fig. 2.34 (b) Pick off point (2) moved to right of block G3 

Step 2: Moving the pick off point (1) to the right of block G2 G3 

R(s)---i 1------'--.-----. C(s) 

~-------~~~--------~ 
G 2G

3 

Fig. 2.34 (c) Moving pick off point (1) to right of G2 G3 
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Step 3.' Absorbing the loop with Gz G3 and H3, and combining it with block G1 in cascade, 
we have, 

R(s) 
+ I G

1 
Gz G3 C(s) 

- l+G GH z 3 3 

HI H2 
--+-
G G G

3 2 3 

Fig. 2.34 (d) Absorbing the loop and combining it with G1 

HI H2 
The feedback paths G G . and -G have the same inputs and both are subtracted from R(s) at 

2 3 3 

the summer 1. Hence they can be added and represented by a single block as shown in Fig. 2.34 (d). 

Step 4.' Finally the closed loop in Fig. 2.34(e) is absorbed and the simplified block is given by 

GIG2G3 
1+G2G3H3 R(s) ----+I ____ ---=c.-::c.-:: ___ 1---_.---C(s) 

1 + GIG2G3 (HI + H2G2) 
1 + G2G3H3 G2G3 

Fig. 2.34 (e) Final step in the block diagram reduction 

The transfer function of the system is, 

C(s) GI G2 G3 -- = -------'----"'---'''-----
R(s) 1+G2 G3 H3 +GI HI +GI G2 H2 

Example 2.11 

C(s) 
Reduce the block diagram and obtain R(s) in Fig. 2.35 (a). 

R(s)--....., I---r-- C(s) 

Fig. 2.35 (a) Block diagram of a system for Ex. 2.11 
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Solution: 

Step 1 : Move pick off point (2) to left of G2 and combine G2 G3 in cascade. Further G2 G3 and 
G4 have same inputs and the outputs are added at summer III. Hence they can be added and 
represented by a single block as shown in Fig. 2.35 (b). 

R(s) 
C(s) 

Fig. 2.35 (b) Block diagram after performing step 1 

Step 2: Moving the pick off point (1) to right of block (G2 G3 + G4), we have 

R(s) AI-------r--.--C(S) 

G G +G 
2 3 4 

Fig. 2.35 (c) Block diagram after step 2 

Step 3: Absorbing loop with (G2 G3 + G4) and H2 

R(s) 
+ G

1 
(G2 G3 +G4 ) ... 

- 1+H
2
(G2 G3 +G4 ) 

C(s) 

G H 
2 1 '""'-

G G +G 
234 

Fig. 2.35 (d) Block diagram after step 3 

The transfer function of the system is 

Fig. 2.35 (e) Simplified block of the sytem 
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C(s) = ___ G_I_C_G_2_G_3_+_G_4_) __ 

RCs) 1+H2 CG2 G3 +G4)+HI GI G2 

2.4 Signal Flow Graph Representation of Control Systems 

Another useful way of representating a system is by a signal flow graph. Although block diagram 
representation of a system is a simple way of describing a system, it is rather cumbusome to use 
block diagram algebra and obtain its overall transfer function. A signal flow graph describes how a 
signal gets modified as it travels from input to output and the overall transfer function can be obtained 
very easily by using Mason's gain formula. Let us now see how a system can be represented by a 
signal flow graph. Before we describe a system using a signal flow graph, let us define certain terms. 

1. Signal flow graph: It is a graphical representation of the relationships between the variables 
of a system. 

2. Node: Every variable in a system is represented by a node. The value of the variable is equal 
to the sum of the signals coming towards the node. Its value is unaffected by the signals which 
are going away from the node. 

3. Branch : A signal travels along a branch from one node to another node in the direction 
indicated on the branch. Every branch is associated with a gain constant or transmittance. The 
signal gets multiplied by this gain as it travels from one node to another. 

In the example shown in Fig. 2.36, there are four nodes representing variables xi' x 2' x3 and x4. 

The nodes are hereafter referred by the respective variables for convenience. For example, 
nodes 1 and 2 are referred to as nodes Xl and x2 respectively. The transmittance or gain of the 
branches are a 12, a23 and a42• In this example, 

x2 = al2 Xl + a42 x4 

Fig. 2.36 Example shows nodes, branches and gains of tHe branches 

The value x2 is unaffected by signal going away from node Xl to node x3• Similarly 

x3 = ~3 x 2 

4. Input node: It is a node at which only outgoing branches are present. In Fig. 2.37 node Xl is 
an input node. It is also called as source node. 

Xl a l2 o-__ ~ __ ~ __ ~ __ ~ __ ~~~~ __ ~ __ ~X5 

Fig. 2.37 An example of a signal flow graph 
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5. Output node: It is a node at which only incoming signals are present. Node Xs is an output 
node. In some signal flow graphs, this condition may not be satisfied by any of the nodes. We 
can make any variable, represented by a node, as an output variable. To do this, we can 
introduce a branch with unit gain, going away from this node. The node at the end of this 
branch satisfies the requirement of an output node. In the example of Fig. 2.37, if the variable 
x4 is to be made an output variable, a branch is drawn at node x4 as shown by the dotted line in 
Fig. (2.37) to create a node x 6. Now node x6 has only incoming branch and its gain is a46 = 1. 
Therefore x6 is an output variable and since x 4 = x 6' x 4 is also an output variable. 

6. Path: It is the traversal from one node to another node through the branches in the direction 
of the branches such that no node is traversed twice. 

7. Forward path: It is a path from input node to output node. 

In the example of Fig. 2.37, Xl - x 2 - x3 - x 4 - Xs is a forward path. Similarly x l - x2 - Xs is also 
a forward path 

8. Loop: It is a path starting and ending on the same node. For example, in Fig. 2.37, x3 - x 4 - x3 

is a loop. Similarly x 2 - x3 - x 4 - x 2 is also a loop. 

9. Non touching loops: Loops which have no common node, are said to be non touching loops. 

10. Forward path gain: The gain product of the branches in the forward path is calledforward 
path gain. 

11. Loop gain : The product of gains of branches in the loop is called as loop gain. 

2.4.1 Construction of a Signal Flow Graph for a System 

A signal flow graph for a given system can be constructed by writing down the equations governing 
the variables. Consider the network shown in Fig. 2.38. 

+ 

R2 Vo(s) output 

Fig. 2.38 A network for constructing a signal flow graph 

Identifying the currents and voltages in the branches as shown in Fig. 2.38; we have 

Vis) = [Il(s) - I2(s)] sL 

I2(s) = [V2(s) - Vo(s)]Cs 

Vo(s) = 12(s) R2 
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The variables 11(s), 12(s), V1(s), V2(s) and Vo(s) are represented by nodes and these nodes are 
interconnected with branches to satisfy the relationships between them. The resulting signal flow 
graph is shown in Fig. 2.39. 

Fig. 2.39 Signal flow graph for the network in Fig. 2.38 

Now, consider the block diagram given in Fig. 2.40. 

R(s~-....... --( I--'--~ C(s) 

Fig. 2.40 Block diagram of a system 

The relationship between the various variables indicated on the diagrams are : 

X1(s) = R(s) - H1(s) ~(s) - His) Xis) 

X2(s) = G1(s) X1(s) - H3(S) C(s) 

X3(s) = Gis) X2(s) 

C(s) = G3(s) X2(s) 

Signal flow graph can be easily constructed for this block diagram, as shown in Fig. 2.41. 

-H3 

R(s) C(s) 

Fig. 2.41 Signal flow graph for the system in Fig. 2.40 

2.4.2 Mason's Gain Formula 

The transfer function (gain) of the given signal flow graph can be easily obtained by using Mason's 
gain formula. Signal flow graphs were originated by S.l. Mason and he has developed a formula to 
obtain the ratio of output to input, called as gain, for the given signal flow graph. 
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Mason's gain fonnula is given by, 

output variable 1: Mk ~k 
T = input variable = k ~ ..... (2.65) 

where Mk is the J(h forward path gain, ~ is the detenninant of the graph, given by, 

~ = 1 -1: P ml + 1: P m2 •••••. (-ll 1: P mr ••.•• (2.66) 

where P mr is the product of the gains of mth possible combination of r non touching loops. 

or ~ = 1 - (sum of gains of individual loops) + sum of gain products of possible combinations 
of 2 non touching loops) - (sum of gain products of all possible combinations of 3 
nontouching loops) + ..... . .... (2.67) 

and ~k is the value of ~ for that part of the graph which is non touching with kth forward path. 

To explain the use of this fonnula, let us consider the signal flow graph shown in Fig. 2.42, and 
find the transfer function C(s)/R(s). 

R(s) gl2 

Fig. 2.42 Signal flow graph to illustrate Mason's gain formula 

Let us enumerate the forward paths and loops of this flow graph. 

1. Forward paths 

2. Loops 

MI = gl2 g23 g34 g4S gS6 g67 

M2 = gl2 g23 g36 g67 

M3 = gl2 g23 g34 g46 

LI = g23 h32 

~ = g23 g34 h42 

L3 = ~s hS4 

L4 = gS6 h6s 

Ls = g46 h6s hS4 

L6 = g23 g36 h6s hS4 h42 

&7 C(s) 
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3. Two non touching loops 

Out of the six loops there are 3 combinations of two non touching loops. Their gain products are: 
P12= LI L3 = g23 g4S h32 hS4 

P22= LI L4 = g23 gS6 h32 h6s 

P32= LI Ls = g23 g46 h32 h6s hS4 

4. Three non touching loops 

There is no combinations of 3 non touching loops or 4 nontouching loops etc. 

.. Pm3 =Pm4 =·····O 

Let us now calculate the determinant of the flow graph. 

Ll = 1 - (LI + L2 + L3 + L4 + Ls + L6) + PI2 + P22 + P32 

= 1 - (g23 h32 + g23 g34 h42 + g4s hS4 + gS6 h6S + g46 h6s hS4 
+ g23 g36 h6s hS4 h42) + (g23 g4S h32 hS4 + g23 gS6 h32 h6s 
+ g23 g46 h32 h6s hs4) 

and LlI = value of Ll which is non touching with MI' 

Eliminate all terms in Ll which have any node in common with forward path MI' All loops LI to L6 
have at least one node in common with MI and hence, 

LlI = 1 

Similarly Ll2 = value of Ll which is non touching with M2. 

The loop L3 is not having any common node with Mz and hence eliminating all loops except L3 
we have, 

Ll2 = 1 - L3 = 1 - g4S hS4 
Similarly, Ll3 = 1 

Applying Mason's gain formula (eqn. 2.65) we have 

C(s) M[ Ll[ + M2 Ll2 + M3 Ll3 
T(s) = R(s) = Ll 

Example 2.12 

Vo (s) 
Find the transfer function V; (s) for the network shown in Fig.2.38. 

Solution: The network and its signal flow graph are reproduced in Fig. 2.43(a) and (b) for convenience. 

Step 1 : Forward paths: There is only one forward path. 

1 
PI = - . sL. Cs. Rz 

R[ 

LCs2R2 

R[ 
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(a) The network 

Step 2: (i) Loop gains 

Fig. 2.43 

L =_ Ls 
I RI 

~ = Cs (- sL) = - s2 LC 

L3 =-~ Cs 

(ii) Product of gains of two non touching loops 
P12= LI.L3 

sL 
= - - (- R2 cs) 

Rl 

R2 2 
= R . LCs 

1 

Step 3 : The determinant of the graph 

(b) Its signal flow graph 

Ls R2 
Ll = 1 + _+S2 LC+R2 Cs+- LCs2 

RI RI 

and LlI = 1 

Step 4: The transfer function is 

LCs
2 

R2 

Vo(s) _ RI 

VI (s) - 1 + Ls + s2LC + R Cs + R2 LCs2 
R 2 R 

I I 

47 
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Example 2.13 

Find the transfer function for the block diagram of Fig. 2.40. 

Solution: The block diagram and its signal flow graph are reproduced in Fig. 2.44 (a) and (b). 

R(s)-....... --t 1--'---' C(s) 

Fig. 2.44 (a) Block diagram of a system 

R(s) 0-___ ---0-....... -0-___ ---0-....... -<>--+--0 C(s) 

Fig. 2.44 (b) Signal flow graph of block diagram in Fig. 2.44 (a) 

Step 1 : Forward path gains 

PI=GI G2 G3 

Step 2: Loop gain 

LI =-GIHI 
L2 =-GI G2 H2 
L3 =-G2 G3 H3 

Two or more non touching loops are not present hence 

P mr = 0 for r = 2, 3, ..... 

Step 3: The determinant of the graph 

Ll = 1 + GI HI + GI G2 H2 + G2 G3 H3 

Lli = 1 

Step' Transfer function 
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Example 2.14 

Draw the signal flow graph for the block diagram given in Fig. 2.45 (a) and obtain the transfer 
function C(s)/R(s). 

R(s) 

Fig. 2.45 (a) Block diagram of a system 

R(s) o---t_-O-__ -<r---t_-o-+---o---t_-o C(s) 

Fig. 2.45 (b) Signal flow graph of block diagram in Fig. 2.45 (a) 

Solution: The signal flow graph can be easily written down as 

Step 1 : Forward path gains 

There are two forward paths 

Step 2 : Loop gains 

PI =°1° 2 ° 3 

P2 =°1° 4 

LI =-0102 HI 
~ =-°2° 3 H2 
L3 =-°1° 2 ° 3 
L4 =-04H2 
Ls =-°1° 4 

No two or more non touching loops. Hence P mr = 0 for r = 2, 3, 4 ..... 

Step 3 : The determinant of the graph 

C(s) 

.(\ = 1 + ° 1 02 HI + 02 03 H2 + ° 1 02 0 3 + 04 H2 + ° 1 04 

.(\1 = 1 
~ = 1 
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Step 4 : The transfer function is, 

C(s) G1 (G 2G3 + G4 ) 

R(s) 1+G1G2H 1 +G 2G3H 2 +G1G2G3 +G1G4 +G4H2 

Example 2.15 

C(s) C(s) 
Find the transfer function Rl (s) and R2 (s) in Fig. 2.46(a) using signal flow graph technique and 

assuming that only one input is present in each case. 

Fig. 2.46 (a) Block diagram of the system 

Solution: The signal flow graph of the system can be easily written down as; 

Fig. 2.46 (b) Signal flow graph of system in Fig. 2.46(a) 

C(s) 
(a) Transfer function Rl (s) ; ~ (s) = 0 

Step 1: Forward path gain 

Pl=G1 G2 G3 

Step 2: Loop gain 

Ll =-G2 H3 

L2 =-G3 H2 

L3 =-G1 G2 G3 H1 

Two or more non touching loops are not present. 

R2(s) 

P mr = 0 for r = 2, 3,4 ..... 

C(s) 
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Step 3: Determinant of the graph 

~ =1+G2H3+G3H2+GjG2G3Hj 

~j = 1 

C(s) 
Step 4: Transfer function Rl (s) is given by 

C(s) G1G2G3 

R1(s) 1+G2H3 +G 3H2 +G1G2G3H1 

C(s) 
(b) Transfer function R

2
(s) ; Rj(s) = 0 

Step 1: Forward path gains 

P j =G3 

Step 2,' Loop gains 

L j =-G3 H2 

L2 =-G3H j G j G2 

L3 =-G2 H3 

Two or more non touching loops are not present. Hence 

P mr = 0 for r = 2, 3 ..... 

Step 3: Determinant of the graph 

L\ = 1 + G3 H2 + G3 H j G j G2 + G2 H3 

~j = 1 + G2 H3 

Step 4: Transfer function C(s) is given by 
R 2 (s) 

C(s) G3(l + G 2H3 ) 
=-----"-'----!'--"-'----

Example 2.15 

C(s) 
Obtain R(s) for the signal flow graph of Fig. 2.47. 

R(s) 

Fig. 2.47 Signal flow graph for ex. 2.15 

1 C(s) 
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S"lution : 

Step 1: Forward path gains 

There are six forward paths in this graph. 

PI = °1°2 °3 

P2 =OI0706 

P3 =-01 07 HI Os 0 3 

P 4 = - 04 Os H2 07 0 6 
Ps = 04 0 s 0 6 
P6 = G4 Os 0 3 

Step 2: Loop gains 

LI =-02 H2 

~ =-05 HI 

L3 =07 HI 0SH2 

There is one set of two non touching loops. They are LI and L2 

.. P12= 02 05 HI H2 

Step 3: The determinant of the graph is 

Ll = 1 + 02 H2 + 0 s HI - 07 Os HI H2 + 02 0 s HI H2 

LlI = (1 + HI 05) 

Ll2 = Ll3 = Ll4= Ll6 = 1 

Lls = 1 + H2 02 

Step 4: The transfer function C(s)/R(s) is 

Control Systems 

01 02 0 3 (1 + HI 05) + 01 07 0 6 - 01 07 HI Os 0 3 - 04 Os H2 °7°6 

C(s) 

R(s) 

2.5 Effects of Feedback 

The output of an o~n loop system depends on the input and the parameters of the system. For the 
same input, the output may be different if the parameters of the system change due to various 
reasons like, variation in environmental conditions, degradation of components etc. The output is also 
affected by any noise that may be present in the system. Also, if the system dynamics are to be 
altered to suit the requirements, the system parameters have to be altered. 

To overcome these problems, feedback can be effectively used. The output is measured by suitable 
means, compared with the reference input and an actuating signal can be produced as an input to the 
system, so that desired output is obtained. It means that the input to the system is continuously 
changed in such a way that the system produces the required output. When the output is the desired 
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output, the error signal and the actuating signal are zero. As long as this error signal is present, the 
output gets modified continuously. Even if the parameters of the system change due to any reason, 
the output will always tend towards the desired value. A feedback system is shown in Fig. 2.48. 

output 

feedback signal 

Fig. 2.48 A feedback system 

Let us now consider the effects of feedback on the performance of the system. 

2.5.1 Effect on system dynamics 

The system dynamics can be changed without actually altering the system parameters. This can be 
illustrated with a simple example of a first order system. Consider the system shown in Fig. 2.49. 

f--___ .,--.... C(s) 

'-------0 
Fig. 2.49 A first order system 

When the switch is open, the system is an open loop system and the open loop transfer function 
is given by 

T(s) = C(s) = ~ 
R(s) s+a 

The impUlse response of the system is given by h(t) = L-1 T(s) = K1e-at 

The time constant 't is given by 

't = -
a 

K 
and the d.c gain (value ofT(s) when s = 0) is given by K = _I 

a 
The transfer function has a pole at s = -a 

..... (2.67) 

..... (2.68) 

..... (2.69) 

..... (2.70) 

If the gain KI is changed by using an amplifier in cascade with the system, it cannot change the 
time constant of the system. It can only alter the d.c. gain. So if the system speed is to be improved, 
only the parameter a has to be changed. 
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Let us now close the switch so that, the system becomes a feedback system. The closed loop 
transfer function is given by, 

C(s) s+a = Kl 
T(s) = R(s) = l+~ -s-+-a--'-+-K-

1 

s+a 

The impulse response of this system is, h(t) = K j e-(a + Kj) t 

The time constant and the dc gain are given by, 

1 .=-­a+Kl 

..... (2.71) 

..... (2.72) 

..... (2.73) 

Kl 
K= a+Kl ..... (2.74) 

By a suitable choice ofK j , the time constant. can be altered. The system response can be speeded 
up by decreasing the time constant by a suitable choice of the gain K j of the amplifier. The pole of the 
feedback.system is located at -(a + K j ) and this can be pushed to the left of the jro axis to speed up 
the system-as shown in Fig. 2.50. 

-(a + K,) 

Pole of 
closed loop 

system 

-a 

(Pole of open 
loop system) 

1m s 

s - plane 

Re s 

Fig. 2.50 Poles of open loop and closed loop systems and their responses 

Thus without altering the system parameter 'a' the system time constant can be adjusted to a 
desired value by using an external amplifier with a suitable gain. However the d.c. gain is reduced as 
given by equation 2.74. This gain can be compensidated by having additional gain outside the loop. 

2.5.2 Effect due to parameter variations 

The output of an open loop system is affected by any variations in the parameter values. However, in 
a closed loop system, the variations in system parameters do not change the output significantly. This 
effect can be best studied by finding the sensitivity of the output to variations in system parameters. 
The term sensitivity of a variable with respect to a parameter is defined as 

Percentage change in variable x 
S x = Sensitivity = . 

Y Percentage change m parameter y .. ... (2.75) 

..... (2.76) 



Mathematical Modelling of Physical Systems ss 

1. Sensitivi;y of overall transfer function for a small change in forward path transfer function 
G(s), SG 

(a) For open loop system 

C(s) = G(s) R(s) 

C(s) 
R(s) = T(s) = G(s) 

ST=OT.G=l G =l 
G OGT ·G' 

(b) For closed loop system 

C(s) G(s) 
- = T(s) = 
R(s) 1 + G(s)H(s) 

T OT G (1+GH)-GH 
SG = OG·r = (1 + GH)2 

l+GH 

G(1+GH) 

G 

..... (2.77) 

..... (2.78) 

From eqns. (2.77) and (2.78) it is clear that the sensitivity of over all transfer function 
for a small variation in forward path transfer function is reduced by a factor (1 + GH) 
in a closed loop system compared to the open loop system. 

2. Sensitivity of closed loop transfer function T( s) with respect to variation in feedback transfer 
function H(s), SJ 

ST 
OTH 

=--G oH·T 

G 
T(s) =--

l+GH 

ST G H(1 + GH) 
G --

(1 + GH)2 G G 

GH 
-- ..... (2.79) 

l+GH 
From eqn. (2.79) it is clear that for large values of GH, the sensitivity approaches unity. Thus 
the over all transfer function is highly sensitive to variation in feedback elements and therefore 
the feedback elements must be properly chosen so that they do not change with environmental 
changes or do not degrade due to ageing. These elements are usually low power elements and 
hence high precision elements can be chosen at a relatively less cost. On the other hand, the 
forward path elements need not satisfy stringest requirements, as any variations in them do 
not affect the performance of the system to a significant extent. These are high power 
elements and hence less precise elements at lower cost can be chosen for the forward path. 
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Example 2.16 

(a) For the open loop system in Fig. 2.51 (a) find the percentage change in the steadystate value 
of C(s) for a unit step input and for a 10% change in K. 

(b) For the closed loop system in Fig. 2.51 (b), find the percentage change in the steadystate 
value ofC(s) for a unit step input for the same increase in the value ofK. 

R(s) I ~ If----C(S) R~~I 
Fig. 2.51 (a) Open loop system (b) Closed loop system' 

Solution: 

(a) 

(b) 

K 
G(s) O.ls+1 

C(s) = G(s) R(s) 

K 

s (O.ls + 1) 

Lt Lt Ks 
css s~O sC(s) = s~O s(O.ls+l) =K 

SCss = ocss.~ = 1 K = 1 
H oK css . K 

.. % change in css for 10% change in K = 10% 

K 
T(s) 

O.ls+1 +K 

K 
C(s) s(O.ls + 1 + K) 

K 
css 

=--
I+K 

SCss 
oCss ~ = 

(l+K)I-K.l 
= OK (1+Ki K css 

1 

I+K 

10 
.. % change in css for 10% change in K = 1 + K 

and for K = 10 

10 
% change in css = U = 0.91 

K(l+K) 

K 

C(s) 
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2.5.3 Effect on Bandwidth 

1 
A cr.·ntrol system is essentially a low pass filter. At some friquency OJb the gain drops to J2 of its 

value at OJ = o. This frequency OJb is called as the bandwidth of the system. If the bandwidth is large, 
the system response is good for high frequencies also. To put in another way, if the bandwidth of the 
system is large, the speed of response is high. 

K 
Consider the open loop system with G(s) = --1 

'ts + 
At any given frequency s = jro 

K 
GUro) = -­

jro 't + 1 

K 
If ro = rob' IG Urob)1 = I jrob't + 11 

G(O) 
But IG UroJI = J2 and G(O) = K 

This is true if rob 't = 1 

ro =­
b 't 

K 
Now consider a unity feedback system with G(s) = --1 

'ts + 
The closed loop transfer function is given by 

K 
T(s)- ---

'ts+l+K 
At a given frequency s = j OJ, we have 

K 
TUro) = 'tjro + 1 + K 

K 
IT (Grob)1 = l'tjrob + 1 + KI 

T(O) 1 K 
TUrob) = J2 = J2 ·1 + K 

This is true if, rob 't = 1 + K 

I+K 

..... (2.80) 

or rob = -'t- ..... (2.81) 

From eqns. (2.80) and (2.81) it is clear that the bandwidth of closed loop system is (1 + K) times 
the bandwidth of open loop system. Hence the speed of response of a closed loop system is larger 

than that of an open loop system. 
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2.5.4 Effect on Noise Signals 

(a) Noise in the forward paths 

Consider the block diagram of the system shown in Fig. 2.52. 

N(s) 
R(s) = 0 + C(s) 

'---------i H(s) 1+--------' 

Fig. 2.52 Noise in the forward path 

A noise signal is added between the forward path blocks Gt(s) and G2(s). To evaluate the effect of 
N(s), we assume R(s) = O. The transfer function between C(s) and N(s) can be easily derived as, 

C(s) G 2 (s) 
TN(s) = N(s) = 1+GI(s)G 2(s)H(s) 

For the practical case of IGt(s) Gis) H(s)1 » 1 

1 
TN(s) = GI(s) H(s) 

or 
N(s) 

C(s) = GI (s) H(s) ..... (2.81) 

It can be seen from eqn. (2.81) that the effect of noise on output can be reduced by making 
I(GI(s)1 sufficiently large. 

(b) Noise in feedback path 

Consider the block diagram in Fig. 2.53. 

R(s) = 0 + C(s) 

Fig.2.53 Noise in the feedback path 

The transfer function between output and the noise signal with R(s) = 0 is given by 

C(s) -G(s)H2(s) 
T(s) = N(s) = 1 + G(s) HI (s) H2 (s) 

For IG(s) HI(s) ~(s)1 » 1, we have 

1 
T(s) = - HI(s) 

1 
and C(s) = - HI (s) N(s) 

Thus by making HI(s) large the effects of noise can be effectively reduced. 
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2.6 Modelling of Elements of Control Systems 

A feedback control system usually consists of several components in addition to the actual process. 
These are: error detectors, power amplifiers, actuators, sensors etc. Let us now discuss the physical 
characteristics of some of these and obtain their mathematical models. 

2.6.1 DC Servo Motor 

A DC servo motor is used as an actuator to drive a load. It is usually a DC motor oflow power rating. 
DC servo motors have a high ratio of starting torque to inertia and therefore they have a faster 
dynamic response. DC motors are constructed using rare earth permanent magnets which have high 
residual flux density and high coercivity. As no field winding is used, the field copper losses are zero 
and hence, the overall efficiency of the motor is high. The speed torque characteristic of this motor 
is flat over a wide range, as the armature reaction is negligible. Moreover speed is directly proportional 
to the armature voltage for a given torque. Armature of a DC servo motor is specially designed to 
have low inertia. 

In some application DC servo motors are used with magnetic flux produced by field windings. 
The speed ofPMDC motors can be controlled by applying variable armature voltage. These are called 
armature voltage controlled DC servo motors. Wound field DC motors can be controlled by either 
controlling the armature voltage or controlling the field current. Let us now conside'r modelling of 
these two types of DC servo motors. 

(a) Armature controlled DC servo motor 

The physical model of an armature controlled DC servo motor is given in Fig. 2.54. 

If = Const 

e, J, Bo E 
Fig. 2.54 Armature controlled DC servo motor. 

The armature winding has a resistance Ra and inductance La' The field is produced either by a 
permanent magnet or the field winding is separately excited and supplied with constant voltage so 
that the field current If is a constant. 

When the armature is supplied with a DC voltage of ea volts, the armature rotates and produces a 
back e.m.f eb• The armature current ia depends on the difference of ea and eb. The armature has a 
moment of inertia J, frictional coefficient Bo' The angular displacement of the motor is e. 

The torque produced by the motor is given by, 

T = KT ia 

where KT is the motor torque constant. 

..... (2.84) 
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The back emf is proportional to the speed of the motor and hence 

eb=Kb 9 
The differential equation representing the electrical system is given by, 

di 
R . +L a + -a la a dt eb - ea 

Taking Laplace transform of eqns. (2.84), (2.85) and (2.86) we have 

T(s) = KT laCs) 

Eb(s) = Kb s 9(s) 

(Ra + s La) laCs) + Eb(s) = Ea(s) 

I (s) = Ea (s) - KbS 9(s) 
a Ra +sLa 

The mathematical model of the mechanical system is given by, 

d29 d9 
J - + Bo- =T 

dt2 dt 

Taking Laplace transform of eqn. (2.91), 

(Js2 + Bos) 9(s) = T(s) 

Using eqns. (2.87) and (2.90) in eqn. (2.92), we have 

Ea (s) - KbS 9(s) 
9(s) = KT (Ra + sLa)(Js2 + Bos) 

Solving for 9(s), we get 

9(s) = KT Ea (s) 
s[(Ra +sLa)(Js+BO)+KT Kb] 

Control Systems 

..... (2.85) 

..... (2.86) 

..... (2.87) 

..... (2.88) 

..... (2.89) 

..... (2.90) 

..... (2.91) 

..... (2.92) 

..... (2.93) 

..... (2.94) 

The block diagram representation of the armature controlled DC servo motor is developed in 
steps, as shown in Fig. 2.55. Representing eqns. (2.89), (2.87), (2.92) and (2.88) by block diagrams 
respectively, we have 

(ii) 

(iii) (iv) 

Fig. 2.55 Individual blocks of the armature controlled DC servo motor. 
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Combining these blocks suitably we have the complete block diagram as shown in Fig. 2.56. 

Fig. 2.56 Complete block diagram of an armature controlled DC servo motor 

Usually the inductance of the armature winding is small and hence neglected. The overall transfer 
function, then, becomes, 

Kr IRa 
s(Js + B) 

where B = Bo + KbKr is the equivalent frictional coefficient. 
Ra 

..... (2.95) . 

..... (2.96) 

It can be seen from eqn. (2.95) that the effect of back emf is to increase the effective frictional 
coeffcient thus providing increased damping. Eqn. (2.96) can be written in another useful form 
known as time constant form, given by, 

..... (2.97) 

where 
K 

KM = R r
J 

is the motor gain constant 
a 

and J . h . "m = B IS t e motor tIme constant 

(Note: Kb and KT are related to each other and in MKS units Kb = KT. Kb is measured in V/rad/sec 

and KT is in NmlA) 

Armature controlled DC servo motors are used where power requirements are large and the 
additional damping provided inherently by the back emf is an added advantage. 
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(b) Field controlled DC servo motor 

The field controlled DC servo motor is shown in Fig. 2.57. 

~ 

+ 

Fig. 2.57 Field controlled DC servo motor 

The electrical circuit is modelled as, 

lis) = Ef(s) 
R f +Lfs 

T(s) = KT Ir(s) 

and (Js2 + Bo) 9(s) = T(s) 

Combining eqns. (2.98), (2.99) and (2.100) we have 

where 

9(s) Kr 

Ef(s) s(Js + Bo)(Rf + Lfs) 

s('tms + l)('tfs + 1) 

~ = KTfR.;30 = motor gain constant 

'tm = JlBo = motor time constant 

1- = L/Rt- = field time constant 

The block diagram i~ as shown in Fig. 2.58. 

Fig. 2.58 Block diagram of a field controlled DC servo motor 

Ia = Const 

Control Systems 

..... (2.98) 

..... (2.99) 

..... (2.100) 

..... (2.101) 

Field controlled DC servo motors are economcial where small size motors are required. For the 
field circuit, low power servo amplifiers are sufficient and hence they are cheaper. 
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2.6.2 AC Servo Motors 

An AC servo motor is essentially a two phase induction motor with modified constructional features 
to suit servo applications. The schematic of a two phase ac servo motor is shown in Fig. 2.59. 

Control r-Vr1 
o-____ ~----~ __ ~wm~·=d~mg ~ 

Actuation 
signal 

Servo 
amplifier 

Fig. 2.59 Schematic of a 2 phase ac servo motor 

Reference 
windmg 

It has two windings displaced by 90° on the stator. One winding, called as reference winding, is 
supplied with a constant sinusoidal voltage. The second winding, called control winding, is supplied 
with a variable control voltage which is dip laced by ± 90° out of phase from the reference voltage. 

The major differences between the normal induction motor and an AC servo motor are: 

1. The rotor winding of an ac servo motor has high resistance (R) compared to its inductive 

reactance (X) so that its ~ ratio is very low. For a normal induction motor, ~ ratio is high 

so that the maximum torque is obtained in normal operating region which is around 5% of slip. 
The torque speed characteristics of a normal induction motor and an ac servo motor are 
shown in Fig. 2.60. 

Torque 

Synchronous 
speed 

Speed 

Fig. 2.60 Torque speed characteristics of normal induction motor and ac servo motor 

The Torque speed characteristic of a normal induction motor is highly nonlinear and has a 
positive slope for some portion of the curve. This is not desirable for control applications, as 
the positive slope makes the systems unstable. The torque speed characteristic of an ac servo 
motor is fairly linear and has negative slope throughout. 

2. The rotor construction is usually squirrel cage or drag cup type for an ac servo motor. The 
diameter is small compared to the length of the rotor which reduces inertia of the moving 
parts. Thus it has good accelerating characteristic and good dynamic response. 

3. The supply to the two windings of ac servo motor are not balanced as in the case of a normal 
induction motor. The control voltage varies both in magnitude and phase with respect to the 
constant reference voltage applied to the reference winding. The direction of ratation of the 
motor depends on the phase C± 90°) of the control voltage with respect to the reference voltage. 
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For different rms values of control voltage the torque speed characteristics are shown in 
Fig. 2.61. The torque varies approximately linearly with respect to speed and also _control 
voltage. The torque speed characteristics can be linearised at the operating point and the transfer 
function 9f the motor can be obtained. 

Speed 8 

Fig. 2.61 AC servo motor speed torque characteristics 

The torque is a function of speed a and the control voltage E. Thus 

TM = f(a, E) ..... (2.102) 

Expanding eqn. (2.102) in Taylor series around the operating point, T M = T MO' E = Eo and a = a 0 

and neglecting terms of order equal to and higher than two, we have 

OTMI ( ) OTMI .. TM=TMO + BE ?=Eo E-Eo + oe ?=Eo(8-80 ) 

9=9 9=9 o 0 

or 

where 

(Note: Since OT~ is negative, B will be positive) oe 
Eqn. (2.104) can be written as 

~TM=KAE-B~a 
The mechanical equation is given by 

J ~e +Bo~a =~TM=~-B~a 

..... (2.103) 

..... (2.104) 

..... (2.105) 

..... (2.106) 

..... (2.107) 

Taking Laplace transform of eqn. (2.107), we get the transfer function of an ac servo motor as, 

~8(s) K 
--= ---:::-----
~E(s) Js 2 + (Bo + B)s 

..... (2.108) 

In time constant form we can write eqn. (2.108) as 

..... (2.109) 
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where TC K M . '''m = = otor gam constant 
Bo +B 

J 
and "em = Bo + B = Motor time constant 

If the slope of the torque speed characteristic is positive, B, from eqn. (2.105) is negative and the 
effective friction coefficient Bo + B may become negative and the system may become unstable. 

The transfer function of the motor around the op.erating point may be written as, 

C(s)= 9(s) = Km ...... (2.110) 
E(s) s("ems + 1) 

The constants K and B can be obtained by conducting a no load test and blocked rotor test on the 
ac servo motor at the rated control voltage Ec. 

On no load T M = 0 and on blocked rotor, e = o. 
These two points are indicated as P and Q respectively on the diagram of Fig. 2.62. The line 

joining P and Q represents the approximate speed torque characteristic at rated control voltage. 
p 

torque i 
Q 

o Speed e -. 
Fig. 2.62 Torque speed characteristic of servo motor at rated control voltage 

and 
T 

B = ---¥-
9 

..... (2.111 ) 

..... (2.112) 

To take into effect the nonlinearity of the torque speed curve, B is usually taken to be half of the 
value given by eqn. (2.112). 

2.6.3 Synchros 

A commonly used error detector of mechanical positions of rotating shafts in AC control systems is 
the Synchro. It consists of two electro mechanical devices. 1. Synchro transmitter 2. Synchro 
receiver or control transformer. The principle of operation of these two devices is same but they 
differ slightly in their construction. 

The contruction of a Synchro transmitter is similar to a 3 phase alternator. The stator consists of 
a balanced three phase winding and is star connected. The rotor is of dumbbell type -construction and 
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is wound with a coil to produce a magnetic field. When an ac voltage is applied to the winding of the 
rotor, a magnetic field is produced. The coils in the stator link with this sinusoidally distributed 
magnetic flux and voltages are induced in the three coils due to transformer action. Thus the three 
voltages are in time phase with each other and the rotor voltage. The magnitudes of the voltages are 
proportional to the cosine of the angle between the rotor position and the respective coil axis. The 
position of the rotor and the coils are shown in Fig. 2.63. 

S2 
..... e + 2400 

"" ".f'" 
n \ \ e + 1200 

\¥\ 
AC supply \ \ 

\ , 
I 

~---------------------o 

Fig. 2.63 Synchro transmitter 

If the voltages induced in the three coils are designated as Vs ,vs and Vs and if the rotor ltXis 
makes angle Bwith the axis of SI winding, we have, 1 2 3 

vR(t) = vr Sin ffirt 

Vs = KVr Sin ffirt cos (9 + 120) 
In 

v~n = KVr Sin ffirt cos 9 

Vs = KVr Sin ffirt cos (9 + 240) 
3n 

These are the phase voltages and hence the line voltages are given by, 

vSls2 = vsln - v~n = J3 KVr Sin (9 + 240) Sin ffirt 

v~s3 =vs2n-vs3n= J3 KVr Sin (9 + 120)Sinffirt 

..... (2.113) 

..... (2.114) 

..... (2.115) 

..... (2.116) 

..... (2.117) 

vS3S1 = V S3n - V SI n = J3 KV r Sin e Sin ffirt ..... (2.118) 

When B= 0, the axis of the magnetic field coincides with the axis of coil S2 and maximum voltage 
is induced in it as seen from eqn. (2.114). For this position of the rotor, the voltage Vs s is zero, as 
given by eqn. (2.118). This position of the rotor is known as the 'Electrical Zero' of trle\ransmitter 
and is taken as reference for specifying the rotor position. 

In summary, it can be seen that the input to the transmitter is the angular position of the rotor and 
the set of three single phase voltages is the output. The magnitudes of these voltages depend on the 
angular position of the rotor as given in eqn. (2.116) to (2.118). 

Now consider these three voltages to be applied to the stator of a similar device called control 
transformer or synchro receiver. The construction of a control transformer is similar to that of the 
transmitter except that the rotor is made cylindrical in shape whereas the rotor of transmitter is 
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dumbell in shape. Since the rotor is cylindrical, the air gap is uniform and the reluctance of the 
magnetic path is constant. This makes the output impedance of rotor to be a constant. Usually the 
rotor winding of control transformer is connected to an amplifier which requires signal with constant 
impedance for better performance. A synchro transmitter is usually required to supply several control 
transformers and hence the stator winding of control transformer is wound with higher impedance 
per phase. 

Since the same currents flow through the stators of the synchro transmitter and receiver, the 
same pattern of flux distribution will be produced in the air gap of the control transformer. The 
control transformer flux axis is in the same position as that of the synchro transmitter. Thus the 
voltage induced in the rotor coil of control transformer is proportional to the cosine of the angle 
between the two rotors. Hence, 

elt) = K, Vr Cos <I> sin rort ..... (2.119) 

where ¢ is the angle between the two rotors. When ¢ = 90°, e/t) = 0 and the two rotors are at right 
angles. This position is known as the 'Electrical Zero' for the control transformer. In Fig. 2.64, a 
synchro transinitter receiver pair (usually called Synchro pair) connected as an error detector, is 
shown in the respective electrical zero positions. 

Fig. 2.64 Synchro pair connected as error detector 

If the rotor of the transmitter rotates through an angle 8 in the anticlockwise direction, and the 
rotor of control transformer rotates by an angle a. in the anticlockwise direction, the net angular 
displacement between ~he two is (90 - 8 + a.). From eqn. (2.119), 

elt) = K, Vr Sin rort Cos (90 - 8 + a.) 

= K, V r Sin (8 - a.) Sin rort 

If «() - a) is small, which is usually the case, 

elt) = K, Vr (8 - a.) Sin rort 

..... (2.120) 

..... (2.121) 

Thus the synchro pair acts as an error detector, by giving a voltage elf) proportional to the 
difference in the angles of the two rotors. If the angular position of synchro transmitter is used as the 
reference position, the transformer rotor can be coupled to the load to indicate the error between the 
reference and the actual positions. 



68 Control Systems 

The waveform of error voltage for a given variation of difference in the angular positions together 
with the reference voltage is shown in Fig. 2.65. 

v(t) 

(8 - a) 

Fig. 2.65 Waveforms of voltages in synchro error detector 

Thus, we see that the output of the error detector is a modulated signal with the ac input to the 
rotor of transmitter acting as carrier wave. The modulating signal em(t) is 

ern(t) = Ks (9 - a) ..... (2.122) 

where ~ is known as the sensitivity of the error detector. Thus the synchro pair is modelled by the 
eqn. (2.122) when it is connected as an error detector. 

2.6.4 AC Tacho Generator 

An ac tacho generator consists of two coils on the stator displaced by 900
• The rotor is a thin 

aluminium cup that rotates in the air gap in the magnetic flux produced by one of the stator coils 
called as reference coil. This coil is supplied with a sinusoidal voltage, Vr Sin OJct, where OJc is called 
the carrier frequency. The aluminium cup has low inertia and high conductivity and acts as a short 
circuited rotor. Because of the special construction of the rotor, this generator is also known as drag 
cup generator. The schematic of an ac tachometer is shown in Fig. 2.66. 

Fig. 2.66 

Refer~nce ~in ooct 
coli ~ 

drag cup G 
rotor~ 

quadrature coil 

(a) Schematic of AC tacho generator 

~r 

(b) Ferrari's principle 

The voltage applied to the reference winding produces a main flux of (A COS OJ/. As per Ferrari's 
principle, this alternating flux can be considered as equivalent to two rotating fluxes ¢I and ¢h' These 
two fluxes are equal in magnitude but rotating in opposite directions with synchronous speed of OJs' 
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If the rotor is stationary, these two fluxes induce equal and opposite voltages in the quadrature 
winding on the stator and therefore th~ voltage across this winding is zero. The two fluxes also 
produce induced currents in the drag cup which in tum produce reaction fluxes oppositing the 
corresponding main fluxes, resulting in the net fluxes ¢fand ¢b' 

Now let the rotor rotate with a speed e in the direction of the forward flux ¢j" Since the relative 
speed of rotor conductors decreases, the induced currents decrease and therefore the main forward 
flux ¢f increases. The relative speed of rotor conductors increases with respect to backward flux ¢b 
and the induced current in the rotor due to this flux increases. Thi~ increases the reaction flux thereby 
decreasing backward flux ¢b' This imbalance in the fields, produces a voltage across the quadrature 
coil. This voltage will be in phase quadrature with the reference voltage and its amplitude is 
proportional to the speed of the rotor. If the rotor rotates in the opposite direction, reverse action 
takes place. Thus the voltage across the quadrature coil is given by, 

..... (2.123) 

If the speed varies slowly with respect to the frequency of the reference voltage, eqn. (2.123) still 
applies. Thus, 

Vf(t) = ~ e (t) Cos wct 

The magnitude of this voltage is given by 

vt(t) = ~ e (t) 

..... (2.124) 

..... (2.125) 

where ~ is called the tachometer constant. Thus the ac tachometer which is generally used as a 
feedback element can be modelled as a proportional element and can be represented by the block 
diagrams (Fig. 2.67). 

tl (t) 

Fig. 2.67 Block diagram of an ac tacho meter 

2.6.5 DC Tacho Generator 

A DC tacho generator is used to feedback a voltage proportional to the speed in a DC control system. 
The construction of a DC tacho generator in simiar to a DC permanent magnet generator. The power 
rating of such a generator is very small and is designed to have low inertia. 

2.6.6 Potentiometers 

These devices are used commonly as feedback elements or error detectors. This is a highly reliable 
device used for measuring linear motion or angular motion. A potentiometer is a resistance with three 
terminals (Fig. 2.68 (a». A reference voltage is applied to the two fixed terminals. The voltage between 
a movable terminals and one of the fixed terminals is an indication of the linear or angular displacement 
of the movable terminal. The total resistance of the potentiometer is uniformly distributed linearly for 
translatory motion or in helical form for rotatory motion. The output voltage is linearly related to the 
position of the movable arm as long as this voltage is connected to a device with high input resistance. 
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Otherwise loading effect will cause nonlinearity in the characteristic of the potentiometer as shown 
in Fig. 2.68 (b). 

Fig. 2.68 (a) Potentiometer 

without loading 
1.0 

with loading 

Fig. 2.68 (b) Effect of loading of a potentiometer 

Potentiometer as an error detector. 

Two resistors connected in parallel and supplied from a reference voltage with two movable 
terminals can be used as an error detector as shown in Fig. 2.69. 

Ref position Load position 

To amplifier 

Fig. 2.69 Potentiometer as an error detector 

One variable arm is used for setting the reference position or desired position. The second variable 
arm is connected to the load. When the position of the load is same as the reference position the 
voltage applied to the amplifier is zero. If the position of the load changes, the voltage between the 
two movable terminars will be non zero and this will be applied to the amplifier. Either positive or 
negative errors can be detected. 
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2.6.7 Stepper Motors 

These motors are also called as stepping motors or simply step motors. This motor can be considered 
as an electromagnetic incremental actuator which converts electrical pulses into mechanical rotation. 
Stepper motors are used in digitally controlled position control systems. The input is a train of pulses. 
One advantage of stepper motor is that it does not require position or speed sensors, as this information 
can be directly obtained by counting the input pulses. 

Depending on the principle of operation, there are two most common types of stepper motors. 

1. Variable reluctance motor (VR motor) and 

2. Permanent magnet motor (PM motor). 

Variable reluctance motor 

A VR motor has a wound stator and an unexcited rotor. A typical VR motor is shown in Fig. 2.70. 
This is a three phase stator with twelve stator teeth. For each phase there are four teeth distributed 
over the periphery of the stator and a winding is placed on these slots. The teeth are marked ABC 
and windings are not shown in the diagram. The rotor has eight teeth. Both the stator and rotor are 
constructed with high permeability material like silicon steel to allow large magnetic flux. 

The principle of operation of VR motor is as follows. If anyone phase is excited (say A phase), 
the rotor will align itself such that its teeth are directly under the teeth of excited winding so that the 
reluctance of the magnetic path is low. In this position the rotor is in stable equilibrium. Now if a 
pulse is given to the next phase (say B phase), the rotor teeth nearest to the B phase stator teeth will 
be pulled to align directly under B phase teeth. Thus the rotor moves one step in the anticlock wise 
direction. If now a pulse is given to the A phase, the rotor moves one more step in the counter 
clockwise direction. If the sequence of phases to which pulses are given is altered ie from ABC to 
A C B, the motor rotates in clockwise direction. 

Fig. 2.70 Variable reluctance stepper motor 

360 
When a tooth of rotor is aligned with say, phase A, the next tooth on the rotor is 8 = 45° away 

360 
from it. The tooth corresponding to the next phase ie phase B is at an angle of 12 = 30° from phase A. 
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Hence when phase B is excited, the tooth on the rotor nearest to the tooth corresponding to B phase 
is 45 - 30 = ISO away from it and therefore the rotor rotates through 15° in one step. So for 
every pulse the rotor rotates by ISO, either in clockwise direction or anticlockwise direction depending 
on the sequence of excitation of the three phases. The angle throgh which the rotor moves for one 
pulse is known as the step angle. The frequency of pulses applied to the stator windings will control 
the speed of rotation of the stopper motor. 

Permanent Magnet motor (PM motor) 

In permanent magnet motors, the rotor is made up of ferrite or rare earth material and is permanently 
magnetised. In the 4 pole, 2 phase PM motor shown in Fig. 2.71 the stator consists of two stacks, 
each with a phase winding, displaced electrically by 90°. By exciting these two phases, phase a and 
phase b suitably, stepping action can be obtained. This is shown in Fig. 2.71. 

(a) (b) 

Fig. 2.71 (a) Phase a of a PM motor (b) Phase b of a PM motor 

Let us suppose that the phase a is given a pulse so that the stator poles are as indicated in 
Fig. 2.71 (a). The rotor will align itself in the position shown in Fig. 2.71 (a). Now let us excite the 
phase b also by a pulse, the stator poles effectively shift counter clockwise by 22.5° as shown in 
Fig. 2.71 (b). Since the magnetic axis is shifted, the rotor also has to move by 22.So in counter 
clockwise direction to align itself with the new magnetic axis. Now if phase a is unenergised, the 
stator magnetic axis moves by another 22.5° in the counter clockwise direction and hence the rotor 
also moves by the same angle in the same direction. To move another step in the same direction, 
phase a is given a pulse in the opposite direction. Rotation in the clockwise direction can be obtained 
by suitably modifying the switching scheme. Generally, two coils are provided for each phase to 
facilitate easy switching by electronic circuitry. 
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Problems 

2.1 Obtain the transfer function for the following networks. 

3 
0 

+ + 

VI(S) 

Cs 

2 R 4 

T(s) = V2(s) 
VI(S) 

Fig. P 2.1 (a) 

2.2 Obtain the transfer functions for the following mechanical translational systems. 

X2(s) 
T(s) = F(s) 

Fig. P 2.2 (a) 

Yes) 
T(s) = --

Xes) 

Fig. P 2.2 (b) 

Xes) 
T(s) = F(s) 

Fig. P 2.2 (c) 

2.3 Obtain the transfer function for the following mechanical rotational system. 

Fig. P2.3 

73 

20 



74 Control Systems 

2.4 Draw F - v and F - i analogous circuits for the problem 2.2 (a), (b) and (c). 

2.5 Obtain the transfer function Xes) for the electromechanical system shown in Fig P 2.5. 
Yes) 

R 

v 

dx 

Plunger 
9---\.. 

e 9-_~Coi1 

Fig. P2.5 

x 

Assume e = Kb dt and the force produced on the mass f = kr i. 
2.6 In the thermal system shown, heater coil is used to heat the liquid entering the insulated tank 

at temperature 9i to hot liquid at temperature 9. The liquid is thoroughly mixed to maintain 
uniform temperature of the liquid in the tank. IfM is the mass ofthe liquid in the tank in Kg, 
C is the specific heat of liquid in J I Kg 10K, W is the steady state liquid flow rate in kg/sec 
and hi is the heat input rate in J/sec, obtain the transfer function of the system when, 

(i) Heat input rate is changed, with inlet temperature of liquid kept constant and 

(ii) inlet temperature is changed with heat input rate held constant. Also write the differential 
equation when heat input rate and inlet liquid temperature are charged. 

Fig. P2.6 
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2.7 A thin glass bulb mercury thermometer is immersed suddenly in a hot both of temperature 
ab• Obtain expression for the temperature of the thermometer. 

Fig. P2.7 

Thermal capacitance of thermometer is C 

Thermal resistance of the thermometer is R 

2.8 Obtain the transfer function C(s)/ M(s) for the liquid manometer system shown in Fig P 2.8 

pre~ure ~ 

dampingB 

(Fluid density y, Area of tube A) 

Fig. P2.8 

2.9 Obtain the transfer function of the liquid level system shown in Fig. P 2.9. The output is the 
liquid level c in the second vessel and the input is the inflow m. 

c 

Fig. P2.9 
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2.10 A d.c position control system consists of a permanent magnet armature controlled d.c 
srevomotor, a potentiometer error detector, a d.c Amplifier and a tachogenerator coupled to 
the motor. Assuming the motor and load frictions to be negligible and a fraction K of the 
tachogenerator output is fedback, draw the schematic of the control system and obtain its 
transfer function. 

The parameters of the system are, 

Moment of inertia of motor, JM = 3 x 10-3 kg - m2 

Moment of inertia of load, JL = 4 kg - m2 

Motor to load gear ratio 

Load to potentiometer gear ratio 

Motor torque constant 

Tachogenerator constant 

Sensitivity of error detector 

Amplifier gain 

€\ 
-.-=-
8M 50 

8L -. = 1 
8e 

K
t 

= 2.5 Nco m I Amp 

~ = 0.1 V/rad/sec 

Kp = 0.5 V/rad 

KAAmpsNolt 

2.11 A position control system using a pair of synchros and an armature controlled dc servomotor 
is shown in Fig. P 2.11. The demodulator has a transfer function given by Kd. d.c volts/a.c volts. 

Fig. P 2.11 
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The sensitivity of error detector is Ks.v/rad 

Draw (a) The block diagram 

77 

(b) The signal flow graph of of the system and obtain its transfer function. Use the 
following values for the parameters. 

Kd = 0.5 VIV 

Ks = SOV/rad 

KA = 10VIV 

The back emf constant Kb = 1.5 V Irad/sec 

KT = 1.5 Nw mlA 

\ = 0.5 Kgm2 

BL = 1 Nro/rad/sec. 

Ra = In 
2.12 Reduce the block diagram shown in Fig. P 2.12 and obtain the over all transfer function. 

R(s) C(s) 

Fig. P 2.12 

2.13 Obtain the overall transfer functions for the following signal flow graphs using mason's 
gain formula. 

(a) R(s) o--"--o--~--<:>---+---<>---J_-o-_,,----<)--~_-o--"--oC(s) 

-1 

(b) 

Fig. P 2.13 
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2.14 Reduce the block diagrams shown in Fig P 2.14 and obtain theirtransfer functions. 

R(s) C(s) 

~--------~Hl~------------------------~ 
(a) 

R(s) + 

R(s) C(s) 

(c) 

Fig. P.2.14 

2.15 Draw the signal flow graph for the network shown and obtain its transfer function, 

12 (s) 
T(s) = VIes) 

1 
-F 
2 In 

2H 

IF 

Fig. P 2.15 

2n 

IH 



Mathematical Modelling of Physical Systems 79 

2.16 Draw the signal flow graphs of the systems given in problem 2.13 and obtain their transfer 
functions. 

2.17 Consider the voltage regulator shown in Fig. P 2.17. 

Amplifier 
KA 

~= 1500 

s 

Fig.P2.17 

R.= 0.50 

A voltage of KVo is fedback to the amplifier. The amplifier gain KA = 10V/volt and the 
generator constant Kg = SOV / Amp. 

(a) With switch S open, what should be the reference voltage to get an output voltage of 
200V on no load. If the same reference voltage is maintained, what will be the output 
voltage when the generator delivers a steady current of 20A. 

(b) With reference voltage of 80V and switch S closed what part of the output voltage is to 
be fedback to get a steady terminal voltage of 10V on no load. 

(c) With the system as in part b, if the generator supplies a load of 20A, what will be the 
terminal voltage. 

(d) What should be the reference voltage to maintain an output voltage of200V at 20A load 
under closed loop condition. 

2.18 For the system shown in Fig P 2.18 determine the sensitivity of the closed loop transfer 
function with respect to G, Hand K. Take ro = 2 rad/sec. 

R(s) + 1 C(s) 
G(s) = --h,---­

s(s+2) 

Fig. P.2.18 
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2.19 In the position control system shown in Fig P. 2.19, derivative error compensation is used. 
Find the sensitivity of the closed loop transfer function at (j) = lrad/sec with respect to the 
derivative error coefficient Kd with nominal value of Kd = 2 

R(s) + C(s) 

Fig. P. 2.19 

2.20 The torque speed characteristic of a two phase ac servo motor is as shown in Fig P. 2.20 
with rated control voltage of IISV at 50Hz applied to the control winding. The moment of 
Inertia of the motor is 7.5 x 10--{) kg-m2. Neglecting the friction of the motor, obtain its 

transfer function 8(s) where 8(s) is the shaft position and V c(s) is the control voltage. 
Vc(s) 

0.1 

Torque in 
Nw.m 

1500 Speed in RPM 

Fig. P.2.20 

-jJ-



3 Time Response Analysis of 
Control Systems 

3.1 Introduction 

The first st~p in the analysis of a control system is, describing the system in terms of a mathematical 
model. In chapter 2 we have seen how any given system is modelled by defining its transfer function. 
The next step would be, to obtain its response, both transient and steadystate, to a specific input. The 
input can be a time varying function which may be described by known mathematical functions or it 
may be a random signal. Moreover these input signals may not be known apriori. Thus it is customary 
to subject the control system to some standard input test signals which strain the system very severely. 
These standard input signals are : an impulse, a step, a ramp and a parabolic input. Analysis and 
design of control systems are carried out, defining certain performance measures for the system, 
using these standard test signals. 

It is also pertinent to mention that any arbitary time function can be expressed in terms of linear 
combinations of these test signals and hence, if the system is linear, the output of the system can be 
obtained easily by using supersition principle. Further, convolution integral can also be used to determine 
the response of a linear system for any given input, if the response is knownfor a step or an impulse 
input. 

3.2 Standard Test Signals 

3.2.1 Impulse Signal 

An impulse signal is shown in Fig. 3.1. 

f(t) 

(A) 

--.t 
Fig. 3.1 An Impulse signal. 
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The impulse function is zero for all t ;t! 0 and it is infinity at t = O. It rises to infinity at t = 0- and 
comes back to zero at t = 0+ enclosing a finite area. If this area is A it is called as an impulse function 
of strength A. If A = 1 it is called a unit impulse function. Thus an impulse signal is denoted by 
f(t) = A 8 (t). 

3.2.2 Step Signal 

A step signal is shown in Fig. 3.2. 

Af--------

f(t) 

o ~t 

Fig. 3.2 A Step Signal. 

It is zero for t < 0 and suddenly rises to a value A at t = 0 and remains at this value for t > 0: It is 
denoted by f(t) = Au (t). If A = 1, it is called a unit step function. 

3.2.3 Ramp signal 

A ramp signal is shown in Fig. 3.3. 

A 

f(t) 

1.0 ~t 

Fig. 3.3 A Ramp Signal. 

It is zero for t < 0 and uniformly increases with a slope equal to A. It is denoted by f (t) = At. 
If the slope is unity, then it is called a unit ramp signal. 

3.2.4 Parabolic signal 

A parabolic signal is shpwn in Fig. 3.4. 

Fig. 3.4 A unit parabolic signal. 

A 
2 

f(t) 

1.0 ~t 
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At2 
A parabolic signal is denoted by f (t) == 2' If A is equal to unity then it is known as a unit 

parabolic signal. 

It can be easily verified that the step function is obtained by integrating the impulse function from 
o to 00; a ramp function is obtained by integrating the step function and finally the prabolic function 
is obtained by integrating the ramp function. Similarly ramp function, step function and impulse 
function can be to obtained by successive differentiations of the parabolic function. 

Such a set of functions which are derived from one another are knowp. as singularity functions. If 
the response of a linear system is known for anyone of these input signals, the response to any other 
signal, out of these singularity functions, can be obtained by either differentiation or integration of the 
known response. 

3.3 Representation of Systems 

The input output description of the system is mathematically represented either as a differential 
equation or a transfer function. 

The differential equation representation is known as a time domain representation and the transfer 
function is said to be a frequency domain representaiton. We will be considering the transfer function 
representation for all our analysis and design of control systems. 

The open loop transfer function of a system is represented in the following two forms. 

1. Pole-zero form 

G(s)==K (s+z,)(S+z2)···(s+zm) 
I (s+P,)(s+P2) ... (s+Pn) 

Zeros occur at s == -zl' -~, - - -, -~ 

Poles occur at s == -PI' - P2' - - -, -Pm 

..... (3.1) 

The poles and zeros may be simple or repeated. Poles and zeros may occur at the origin. In the 
case where some of the poles occur at the origin, the transfer function may be written as 

K, (s + z,)(s + Z2)"'(S + zm) G( s) == -r----'--'--'-'--'--"-'----'---"'-'--

S (s+Pr+,)(s+Pr+2) ... (s+Pn) 
..... (3.2) 

The poles at the origin are given by the term ~. The term ! indicates an integration in the 
sr s 

1 
system and hence - indicates the number of integrations present in the system. Poles at 

sr 

origin influence the steadystate performance of the system as will be explained later in this 
chapter. Hence the systems are classified according to the number of poles at the origion. 

If r == 0, the system has no pole at the origin and hence is known as a type - ° system. 
If r == 1, there is one pole at the origin and the system is known as a type - 1 system. Similarly 
if r == 2, the system is known as type - 2 system. Thus it is clear that the type of a system is 
given by the number of poles it has at the origin. 
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2. Time Constant Form 

The open loop transfer function of a system may also be written as, 

K('tzl s + 1) ('tz2 S + 1) ... ('tzm S + 1) 
G(s) = -----=------=--.,--------=------,---

('tP1s + 1) ('t P2 s + 1) ... ('tPn S + 1) 

Control Systems 

..... (3.3) 

The poles and zeros are related to the respective time constants by the relation 

for i = 1, 2, ..... m 

1 
p. = - for j = 1, 2, ..... n 

J 't 
PJ 

The gain constans KI and K are related by 

m 

1t z, 
K=K ~ 

1 n 

1t PJ 
J=I 

The two forms described above are equivalent and are used whereever convenience demands 
the use of a particular form. 

In either of the forms, the degree of the denomination polynomial of G(s) is known as the 
order of the system. The complexity of the system is indicated by the order of the system. In 
general, systems of order greater than 2, are difficult to analyse and hence, it is a practice to 
approximate higher order systems by second order systems, for the purpose of analysis. 

Let us now find the response of first order and second order systems to the test signals 
discussed in the previous section. 

The impulse test signal is difficult to produce in a laboratory. But the response of a system to 
an impulse has great significance in studying the behavior of the system. The response to a unit 
impulse is known as impulse response of the system. This is also known as the natural response 
of the system. 

For a unit impulse function, R(s) = 1 

and C(s) = T(s).1 

and c(t) = fl [T(s)] 

The Laplace inverse ofT(s) is the impulse response of the system and is usually denoted by h(t). 

.. fl [T(s)] = h(t) 

If we know the impulse response of any system, we can easily calculate the response to any 
other arbitrary input vet) by using convolution integral, namely 

t 

c(t) = f h('t) vet - .) d't 
o 

Since the impulse function is difficult to generate in a laboratory at is seldon used as a test signal. 
Therefore, we will concentrate on other three inputs, namely, unit step, unit velocity and unit 
acceleration inputs and find the response of first order and second order systems to these inputs. 
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3.4 First Order System 

3.4.1 Response to a Unit Step Input 

Consider a feedback system with G(s) = ~ as show in Fig. 3.5. 
1:S 

R(s) + 

Fig. 3.5 A first order feedback system. 

The closed loop transfer function of the system is given by 

T(s) = C(s) = _1_ 
R(s) 1:S + 1 

For a unit step input R (s) = ! and the output is given by 
s 

I 
C(s)- --­

s(1:S + 1) 

Inverse Laplace transformation yields 

c(t) = 1 - e-th 

The plot of c(t) Vs t is shown in Fig. 3.6. 

1.0 

0.632 -

c(t) 

Fig. 3.6 Unit step response of a first order system. 
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C(s) 

..... (3.4) 

..... (3.5) 

..... (3.6) 

The response is an exponentially increasing function and it approaches a value of unity as t ~ 00. 

At t = 1: the response reaches a value, 

c(1:) = 1 - e- l = 0.632 

which is 63.2 percent of the steady value. This time, 1:, is known as the time constant of the system. 
One of the characteristics which we would like to know about the system is its speed of response or 
how fast the response is approaching the final value. The time constant 1: is indicative of this measure 
and the speed of response is inversely proportional to the time constant of the system. 
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Another important characteristic of the system is the error between the desired value and the 
actual value under steady state conditions. This quantity is known as the steady state error of the 

- system and is denoted by e ss. 

The error E(s) for a unity feedback system is given by 

E(s) = R(s) - C(s) 

= R (s) _ G(s) R(s) 
1 + G(s) 

R(s) 

1 + G(s) 

1 1 
For the system under consideration G(s) = -, R(s) = - and therefore 

'ts s 

't 
E(s) = --

'ts + 1 
e (t) = e- tJ, 

..... (3.7) 

As t ~ IX) e (t) ~ O. Thus the output of the first order system approaches the reference input, 
which is the desired output, without any error. In other words, we say a first order system tracks the 
step input without any steadystate error. 

3.4.2 Response to a Unit Ramp Input or Unit Velocity Input 

The response of the system in Fig. 3.4 for a unit ramp input, for which, 

1 
R(s) = 2' 

s 
is given by, 

1 
C(s) = S2 ('ts + 1) 

The time response is obtained by taking inverse Laplace transform of eqn. (3.9). 

c(t) = t - 't (1 - e-t1,) 

If eqn. (3.10) is differentiated we get 

dc(t) -tJ, 
-- = 1-e 

dt 

..... (3.9) 

..... (3.10) 

..... (3.11) 

Eqn. (3.11) is seen to be identical to eqn. (3.6) which is the response of the system to a step input. 
Thus no additional information about the speed of response is obtained by considering a ramp input. 
But let us see the effect on the steadystate error. As before, 

1 'ts 't 
E(s) = ~ . 'ts + 1 = s('ts + 1) 

e (t) = 't (1 - e-t1,) 
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and Lt ess = e(t) = 1:' 
t~oo 

..... (3.12) 

Thus the steady state error is equal to the time constant of the system. The first order system, 
therefore, can not track the ramp input without a finite steady state error. If the time constant is 
reduced not only the speed of response increases but also the steady state error for ramp input 
decreases. Hence the ramp input is important to the extent that it produces a finite steady state error. 
Instead of finding the entire response, it is sufficient to estimate the steady state value by using the 
final value theorem. Thus 

ess = Lt s E(s) 
s~O 

Lt 1:'S 

S ~O s(1:'s+ 1) 

=1:' 

which is same as given by eqn. (3.12) 

The response ofa first order system for unit ramp input is plotted in Fig. 3.7. 

c(t) 

ret) 

Fig. 3.7 Unit ramp response of a first order system. 

3.4.3 Response to a Unit Parabolic or Acceleration Input 

The response of a first order system to a unit parabolic input, for which 

1 
R(s) = - is given by, 

S3 

1 
C( s) = -'s 3:-(-1:'s-+-I-) 

..... (3.13) 
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Differentiating eqn. (3.13), we get, 

1 dc(t) --I 
-- =-,+t+, e t 

dt 

..... (3.14) 

Eqn. (3.14) is seen to be same as eqn. (3.10), which is the response of the first order system to 
unit velocity input. Thus subjecting the first order system to a unit parabolic input does not give any 
additional information regarding transient behaviour of the system. But, the steady state error, for a 
prabolic input is given by, 

e (t) = r (t) - c (t) 

t 2 t 2 -~t 
= - _,2+,t __ +,2 e t 

2 2 

Lt 
ess e (t) = 00 

t~oo 

Thus a first ordr system has infinite state error for a prabolic input. The steady state error can be 
easily obtained by using the final value theorem as : 

ess 
Lt s E(s) = Lt R(s) 

s~O s~O ,+1 

Lt s.1 

s\,s + 1) 
=00 

s~O 

Summarizing the analysis of first order system, we can say that the step input yields the desired 
information about the speed of transient response. It is observed that the speed of response is inversely 
proportional to the time constant r of the system. The ramp and parabolic inputs do not give any 
additional information regarding the speed of response. However, the steady state errors are different 
for these three different inputs. For a step input, the steadystate error ess is zero, for a velocity input 
there is a finite error equal to the time constant r of the system and for an acceleration input the 
steadystate error is infinity. 

It is clear from the discussion above, that it is sufficient to study the behaviour of any system to 
a unit step input for understanding its transient response and use the velocity input and acceleration 
input for understanding the steady state behaviour of the system. 

3.5 Second Order System 

3.5.1 Response to a Unit Step Input 

Consider a Type 1, second order system as shown in Fig. 3.8. Since G(s) has one pole at the origin, 
it is a type one system. 
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R(s) + C(s) 

Fig. 3.8 Second Order System. 

The closed loop transfer function is give by, 

T(s) = C(s) = 2 K ..... (3.15) 
R(s) 'ts +s+K 

The transient response of any system depends on the poles of the transfer function T(s). The 
roots of the denominator polynomial in s of T(s) are the poles of the transfer function. Thus the 
denominator polynomial ofT(s), given by 

D(s) = 't s2 + S + K 

is known as the characteristic polynomial of the system and D(s) = 0 is known as the characteristic 
equation of the system. Eqn. (3.15) is normally put in standard from, given by, 

Where, 

KI't 
T(s)= ----

S2 +!s+K/'t 
't 

00 2 
n 

OOn = ~ = natural frequency 

o = ik = damping factor 

The poles of T( s), or, the roots of the characteristic equation 

S2 + 2 0 00 s + 00 2 = 0 n n 

are given by, 
_ 2000 n ± ~40200n 2 

- 400 n 2 
Sl,2 = ---"'---=--2-"------:::..-

= - 0 OOn ±j OOn ~ 

= - 0 OOn ±j OOd 

..... (3.16) 

(assuming 0 < 1) 
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Where OJ d = OJn ~ is known as the damped natural frequency of the system. If 0 > 1, the 

two roots sl' s2 are real and we have an over damped system. If 0 = 1, the system is known as a 
critically damped system. The more common case of 0 < 1 is known as the under damped system. 

If ron is held constant and 8 is changed from 0 to 00, the locus of the roots is shown in Fig. 3.9. 
The magnitude of s 1 or s2 is OJn and is independent of 8. Hence the locus is a semicircle with radius OJn 
until 0= 1. At 0= 0, the roots are purely imaginary and are given by sl 2 = ± jOJn• For 0= 1, the roots 
are purely real, negative and equal to - OJn. As oincreases beyond unity: the roots are real and negative 
and one root approached the origin and the other approaches infinity as shown in Fig. 3.9. 

1m s 
8=0 

s-plane 

8>1 8=1 
----~------~~.-~-----------Res 

--(J)n 

Fig. 3.9 Locus of the roots of the characteristic equation. 

1 
For a unit step input R(s) = - and eqn. 3.16 can be written as 

s 

co 2 1 
C(s) = T(s). R(s) = 2 n 2 • -

S + 28cons + COn S 

Splitting eqn. (3.17) in to partial fractions, assuming oto be less than 1, we have 

C ( ) 
- Kl K2s + K3 

S - - + ----=------=-------:-
S S2 + 28cons + con 2 

Evaluating K1, K2 and K3 by the usual procedure, we have, 

1 s + 28con C (s) = - - --------7--­
S (s + 8COn)2 + con 2(1- ( 2) 

..... (3.17) 

s ~1-82 (S+8COn)2 + COn 2(1_82 ) 

..... (3.18) 
Taking inverse Laplae transform of eqn. (3.18), we have 

c (t) = 1- e-'-',' [cosm, JI-6' t+ hsmm,~ t] ..... (3.19) 
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Eqn. (3.19) can be put in a more convenient from as, 

Where ffid = ffin ~ 

and ..... (3.20) 

This response is plotted in Fig. 3.10. The response is oscillatory and as t ~ 00, it approaches unity. 

Fig. 3.10 Step response of an underdamped second order system. 

If t5 = 1, the two roots of the characteristic equations are S I =. s2 = -OJn and the response is 
given by 

C(s)= (S+ffi
n
)2·; 

and c (t) = 1 - e--<Ont 
- t ffin e--<Ont ..... (3.21) 

This is plotted in Fig. 3.11. 

1.0 - - - - - --

Fig.3.11 Response of a critically damped second order system. 

As the damping is increased from a value less than unity, the oscillations decrease and when the 
damping factor equals unity the oscillations just disappear. If t5is increaed beyond unity, the roots of 
the characteristic equation are real and negative and hence, the response approaches unity in an 
exponential way. This response is known as overdamped response and is shown in Fig. 3.12. 
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l0r------------=====~--

c(t) 

~t 

Fig. 3.12 Step response of an overdamped second order system. 

c (t) = Kl e-sl t + ~ e-s2t 

Where sl and s2 are given by, 

SI,2 =-8 ().)n±().)n ~ 
and Kl and K2 are constants. 

3.5.2 Response to a Unit Ramp Input 

For a unit ramp input, 

1 
R (s) = -­

S2 

and the output is given by, 

().) 2 
C (S) = n 

S2(S2 +28rons+ron
2 ) 

Taking inverse Laplace transform, we get the time response c (t) as, 

28 e -IiOOn t (c-;::;)) 
c (t) = t - -- + Sin ron -Jl- 82 t + ~ for 8 < 1 

ron ron ~l- 82 

The time response for a unit ramp input is plotted in Fig. 3.13. 

215 

c(t) 

Fig. 3.13 Unit ramp response of a second order system. 

Control Systems 

..... (3.22) 

..... (3.23) 
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The response reveals two aspects of the system. 

I. The transient response is of the same form as that of a unit step response. No new information 
is obtained regarding speed of response or oscillations in the system. 

2. It has a steadystate error ess = 28 ,unlike the step response, where the steady state error was 
wn 

zero. Thus, no new information is gained by obtaining the transient response of the system for a 
ramp input. The steadystate error could be easily calculated using final value theorem instead of 
laboriously solving for the entire reponse. For the given system, the error E (s) is given by 

E (s) = R (s) - C (s) 

,., 2 2 21: 2 2 
UJn _ S + uWns + Wn - Wn 

S2 S2(S2 + 28wns + 00/) - S2(S2 + 28wns + 00/) 

and from the final value theorem, 

..... (3.24) 

In a similar manner, the unit parabolic input does not yield any fresh information about the transient 
response. The steadystate error can be obtained using final value theorem in this case also. For the 
given system, for a unit acceleration input, 

3.5.3 

e = ao 
55 

Time Domain Specifications of a Second Order System 

The performance of a system is usually evaluated in terms of the following qualities. 

I. How fast it is able to respond to the input, 

2. How fast it is reaching the desired output, 

..... (3.25) 

3. What is the error between the desired output and the actual output, once the transients 
die down and steady state is achieved, 

4. Does it oscillate around the desired value, 

and 5. Is the output continuously increasing with time or is it bounded. 

The last aspect is concerned with the stability of the system and we would require the system to 
be stable. This aspect will be considered later. The first four questions will be answered in terms of 
time domain specifications of the system based on its response to a unit step input. These are the 
specifications to be given for the design of a controller for a given system. 

In section 3.5, we have obtained the response of a type I second order system to a unit step input. 
The step response of a typical underdamped second order system is plotted in Fig. 3.14. 
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It is observed that, for an underdamped system, there are two complex conjugate poles. Usually, 
even if a system is of higher order, the two complex conjugate poles nearest to the j OJ - axis (called 
dominant poles) are considered and the system is approximated by a second order system. Thus, in 
designing any system, certain design specifications are given based on the typical underdamped step 
response shown as Fig. 3.14. 

2.0 \ 
\ 

c(t) t \\\ 

1.0 

0.5 

"­
" 

ts 

Fig. 3.14 Time domain specifications of a second order system. 

The design specifications are: 

tolerance band 

t --=-----=--=----
-== 1-=---

t.D 

1. Delay time td: It is the time required for the response to reach 50% of the steady state value 
for the first time 

2. Rise time tr: It is the time required for the response to reach 100% of the steady state value 
for under damped systems. However, for over damped systems, it is taken as the time required 
for the response to rise from 10% to 90% of the steadystate value. 

3. Peak time tp: It is the time required for the response to reach the maximum or Peak value of 
the response. 

4. Peak overshoot M : It is defined as the difference between the peak value of the response and 
the steady state vafue. It is usually expressed in percent of the steady state value. If the time for 
the peak is tp' percent peak overshoot is given by, 

c(tp) - c(oo) 
Percent peak overshoot ~ = c( 00) x 100. . .... (3 .26) 

For systems of type 1 and higher, the steady state value c (00) is equal to unity, the same as the 
input. 

5. Settling time ts : It is the time required for the response to reach and remain within a specified 
tolerance limits (usually ± 2% or ± 5%) around the steady state value. 

6. Steady state error ess : It is the error betwen the desired output and the actual output as t ~ 00 
or under steadystate conditions. The desired output is given by the reference input r (t) and 

Lt 
therefore, ess = [ret) - c(t)] 

t~oo 
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From the above specifications it can be easily seen that the time response of a system for a unit 

step input is almost fixed once these specifications are given. But it is to be observed that all the above 

specifications are not independent of each other and hence they have to be specified in such a way 

that they are consistent with others. 

Let us now obtain the expressions for some of the above design specifications in terms of the 

damping factor 0 and natural frequency (On" 

1. Rise time ( t
T

) 

If we consider an underdamped system, from the definition of the rise time, it is the time 

required for the response to reach 100% of its steadystate value for the first time. Hence from 

eqn. (3.20). 

Or 

e-&Dntr 

Since r:--:::; cannot be equal to zero, 
"1- 02 

and 

2. Peak time (tp ) 

Sin (rod tr + 4» = 0 

rod tr + 4> = 1t 

1t-4> 
t = ----===== 
r ron~ 

-I ~1-02 
1t - tan 

o ..... (3.27) 

At the peak time, t p, the response attains its maximum value and this can be obtained by 

differentiating c (t) and equating it to zero. Thus, 

-ocont 
dc(t) oro --.'5 t • e 
-- = n e (On SIll (rod t + 4» - -~==2= COS (rodt + 4». rod = 0 

dt ~1-02 1-0 

Simplifying we have, 

o Sin (rodt + 4» - ~1- 02 cos (rodt + 4» = 0 
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This can be written as, 

where 

or 

Here 

Cos ~ Sin (rodt + ~) - Sin ~ cos (rodt + ~) = 0 

~1-o2 
tan~= 0 

for n = 0, 1, 2, ... 

n = 0 Corresponds to its minimum value at t = 0 

n = 1 Corresponds to its first peak value at t = tp 

n = 2 Corresponds to its first undershoot 

n = 3 Corresponds to its second overshoot and so on 

Hence for n = 1 

1t 
t = -----;=== 
p ron~ 

Control Systems 

..... (3.28) 

Thus, we see that the peak time depends on both wn and 15. If we consider the product of wn 
and tp' which may be called as normalised peak time, we can plot the variation of this normalised 
peak time with the damping factor t5. This is shown in Fig. 3.15. 

4.0 

3.8 

3.6 

0.2 0.4 0.6 0.8 1.0 
~o 

Fig. 3.15 Normalised peak time ron tp Vs 0 for a second order system. 

3. Peak overshoot ( MJT) 

The peak overshoot is defmed as 

~ = c (tp) - 1 
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oron lt 

e-ron~ 
Mp = ~ Sin ~ (": Sin (1t +~) = -Sin~) 

-ltO 

= e
k02 CSin~=~) 
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Hence, peak overshoot, expressed as a percentage of steady state value, is given by, 

-ltO 

M = 100 e
JI-02 

% 
p ..... (3.29) 

It may be observed that peak overshoot My' is a function of the damping factor 0 only. Its 
variation with damping factor is shown in rig. 3.16. 

%M 
p 

100 

80 

60 

40 

20 

0.2 0.4 0.6 0.8 l.0 
-'0 

Fig. 3.16 Percent overshoot Mp Vs 0 for a second order system. 

4. Settling time ( ts ) 

The time varying term in the step response, c (t), consists of a product of two terms; namely, 

-0 ron t 

an exponentially delaying term, h and a sinusoidal term, Sin (OJ; + rP). It is clear that 

1-8 

-oro t 

the response is a decaying sinusoid, the envelop of which is given by b. Thus, the 

1-8 
response reaches and remains within a given band, around the steadystate value, when this 
envelop crosses the tolerance band. Once this envelop reaches this value, there is no possibility 
of subsequent oscillations to go beyond these tolerane limits. Thus for a 2% tolerance band, 

e -0 ronts 

r---2 = 0.02 

"1-8 
For low values of 0, (j « 1 and therefore e-O ronts ::::: 0.02 

4 
t---=4. 
s - 8ro

n 

where .. is the time constant of the exponential term. 

..... (3.30) 
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Eqn. (3.30) shows that the settling time is a function of both 8and lVn. Since damping factor is an 
important design specification, we would like to know the variation of the setting time with 8, with lVn 
fixed. Or, in otherwords, we can define a normalised time lVis' and find the variation of this quantity 
with respect to 8. The step response of a second order system is plotted in Fig. 3.17 for different 
values of 8, taking normalised time lVi, on x-axis. The curves are magnified around the steady state 
value for clarity. 

c(t) 

1.02 

1.0 

0.98 

0.9 

Fig. 3.17 C (t) plotted for different value of o. 

0=0.76 

The settling time monotonically decreases as the damping is decreased from a value greater than 
one (over damped) to less than one (under damped). For 2% tolerance band, it decreases until the 
first peak of the response reaches the tolerance limit of 1.02 as shown by the curve IV in Fig. 3.17. 

Points A, B, C, and D marked on the graph give the values avs' for decreasing values of O. The peak 
value of the response reaches 1.02 at a damping factor 8= 0.76. The settling time for this value of 8 
is marked as point D on the curve. If 8 is decreased further, since the response crosses the upper 
limit 1.02, the point E no longer represents the settling time. The settling time suddenly jumps to a 
value given by the point F on the curve. Thus there is a discontinuity at 8 = 0.76. If 8 is decreased 
further the setting time increases until the first undershoot touches the lower limit of 0.98. Similarly, 
the third discontinuity occurs when the second peak touches the upper limit of 1.02 and so on. The 
variation of lVis with 8 for a tolerance band of 2% is plotted in Fig. 3.18. 

\ 
8 ~ 
6 

liln ts i I~ 
4 I: V 
2 I 1 1 

0.76 1 

0.2 0.4 0.6 0.8 1.0 
0.0 

-70 

Fig. 3.18 Variation of normalised settling time lilnt. Vs o. 
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From Fig. 3.18 it is observed that the least settling time is obtained for a damping factor of 
0= 0.76. Since settling time is a measure of how fast the system reaches a steady value, control 
systems are usually designed with a damping factor of around 0.7. Sometimes. the systems are 
designed to have even lesser damping factor because of the presence of certain nonlinearities which 
tend to produce an error under steadystate conditions. To reduce this steadystate error, normally the 

system gain K is increased, which in turn.decreases the damping (.: 8 = 2.J~T J . However, for 

robotic control, the damping is made close to and slightly higher than unity. This is because the output 
of a robotic system should reach the desired value as fast as possible, but it should never overshoot it. 

S. Steady state error (ess ) 

For a type 1 system, considered for obtaining the design specifications of a second order control 
system, the steady state error for a step input is obviously zero. Thus 

Lt 
ess = 1 - c(t) = 0 

t~oo 

The steady state error for a ramp input was obtained in eqn. (3.24) as ess = 28 
ron 

As the steadystate error, for various test signals, depends on the type of the system, it is dealt in 
the next section in detail. 

3.6 Steady State Errors 

One of the important design specifications for a control system is the steadystate error. The steady 
state output of any system should be as close to desired output as possible. If it deviates from this 
desired output, the performance of the system is not satisfactory under steadystate conditions. The 
steadystate error reflects the accuracy of the system. Among many reasons for these errors, the 
most important ones are the type of input, the type of the system and the nonlinearities present in the 
system. Since the actual input in a physical system is often a random signal, the steady state errors 
are obtained for the standard test signals, namely, step, ramp and parbaolic signals. 

3.6.1 Error Constants 

Let us consider a feedback control system shown in Fig. 3.19. 

R(s) C(s) 

Fig. 3.19 Feedback 'Control System. 
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The error signal E (s) is given by 

E (s) = R (s) - H (s) C (s) 

But C (s) = G (s) E (s) 

From eqns. (3.31) and (3.32) we have 

E (s) - R(s) 
- 1 + G(s)H(s) 

Applying fmal value theorem, we can get the steady state error ess as, 

e
ss 

= Lt s E(s) = Lt sR(s) 
s ~ 0 s ~ 0 I+G(s)H(s) 

Control Systems 

..... (3.31) 

..... (3.32) 

..... (3.33) 

Eqn. (3.33) shows that the steady state error is a function of the input R(s) and the open loop 
transfer function G(s). Let us consider various standard test signals and obtain the steadystate error 
for these inputs. 

1. Unit step or position input. 

1 
For a unit step input, R (s) = -. Hence from eqn. (3.33) 

s 

Lt 
1 s.-
s 

s ~ 0 1 + G(s)H(s) 

1 

1 + Lt G(s) H(s) 
s~ 

Let us define a useful term, position error constant Kp as, 

~ ~ Lt G(s) H(s) 
s~O 

In terms of the position error constant, ess can be written as, 

1 
e =--

ss I+K p 

2. Unit ramp or velocity input. 

For unit velocity input, R(s) = ~ and hence, 
s 

1 
Lt s.-

e = s 
ss s~O I+G(s)H(s> 

Lt 
sG(s)H(s) 

s~O 

Lt 1 

s ~ 0 s + sG(s)H(s) 

..... (3.34) 

..... (3.35) 

..... (3.36) 

..... (3.37) 



Time Response Analysis of Control Systems 

Again, defining the velocity error constant K.. as, 

Lt K.. = s G(s) H (s) 
s~O 

e =-
55 Kv 

3. Unit parabolic or acceleration input. 

1 
For unit acceleration input R (s) = 3"" and hence 

s 

ess 
Lt s 

Lt 
s2G(s)H(s) 

s~O 

Defining the acceleration error constant Ka as, 

Lt 
K = s2 G(s) H(s) 

a s~O 

1 
e =-

55 Ka 

For the special case of unity of feedback system, H (s) 
are modified as, 

Lt 
~ = s~o G(s) 

Lt K.. = sG (s) 
s~O 

and 
Lt 2 

K = s G (S) 
a S~O 
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..... (3.38) 

..... (3.39) 

Lt 

..... (3.40) 

..... (3.41) 

..... (3.42) 

= 1 and eqns. (3.35) (3.38) or (3.41) 

..... (3.43) 

..... (3.44) 

..... (3.45) 

In design specifications, instead of specifying the steady state error, it is a common practice to 
specify the error constants which have a direct bearing on the steadystate error. As will be 
seen later in this section, if the open loop transfer function is specified in time constant form, 
as in eqn. (3.3), the error constant is equal to the gain of the open loop system. 

3.6.2 Dependence of Steadystate Error on Type of the System 

Let the loop transfer function G (s) H (s) or the open loop transfer function G (s) for a unity feedback 
system, be giv·en is time constant form. 

K(Tz1s + 1)(Tz2s + I) - - -­
G(s) = r 

S (Tp1s + 1)(Tp2s + I) - - --
..... (3.46) 
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As s ~ 0, the poles at the origin dominate the expression for G(s). We had defined the type of a 
system, as the number of poles present at the origin. Hence the steady state error, which depends on 

Lt Lt Lt . 
G(s), s G(s) or s2 G(s), IS dependent on the type of the system. Let us therefore 

s~O s~O s~o 

obtain the steady state error for various standard test signals for type-O, type-I and type-2 systems. 

1. Type -0 system 

From eqn. (3.46) with r = 0, the error constants are given by 

'" 

Similarly 

Lt 
~ = CJ(s) 

s~o 

Lt 
~ = s CJ(s) 

s~o 

K = Lt S2 CJ(s) = 0 
a s~O 

Lt 

s~o 

Lt 

s~o 

..... (3.47) 

The steady state errors for unit step, velocity and acceleration inputs are respectively, from 
eqns. (3.34), (3.37) and (3.40), 

2. Type 1 system 

1 1 ( . ) e
55 

= --= -- step mput 
I+Kp I+K 

e
S5 

= _1_ = 00 (velocity input) 
Kv 

1 
e = - = 00 (acceleration input) 

55 K 
a 

For type 1 system, r = 1 in eqn. (3.46) and 

and 

~ = Lt (}(s) 
s~O 

K 
= Lt - = 00 

s 

Lt Lt K 
~ = s CJ(s) = s. - = K 

s~O s~O s 

Lt Lt K 
K = s CJ(s) = s2. - = 0 

a s~O s~O S 

The steady state error for unit step, unit velocity and unit acceleration inputs are respectively, 

1 1 
e = --=- =0 

S5 l+K 00 
p 

(position) 
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1 1 
e = - = - (velocity) 

55 Ky K 

and (acceleration) 

3. Type 2-system 

For a type - 2 system r = 2 in eqn. (3.46) and 

K = Lt G(s) 
-" s ~O 

Lt K 
-=00 

s~O S2 

Lt Lt sK 
~ = s G(s) -=00 

s~O s~O S2 

Lt Lt s2K 
and Ka = s2 G(s) -=K 

s~o s~O S2 

The steady state errors for the three test inputs are, 

and 

1 1 
e = --= -- = 0 (position) 

5S I+Kp 1+00 

1 1 
e=-=-=O 

ss Ky 00 

1 1 
ess = K= K 

a 

(velocity) 

(acceleration) 

Thus a type zero system has a fmite steady state error for a unit step input and is equal to 

1 1 
e =--=--

5S I+K I+K p 

..... (3.47) 

Where K is the system gain in the time constant from. It is customary to specify the gain of a 
type zero system by ~ rather than K. 

Similarly, a type -1 system has a finite steady state error for a velocity input only and is given 
by 

1 1 
eS5 = K = K ..... (3.48) 

y 

Thus the gain of type -1 system in normally specified as ~. 
A type -2 system has a finite steady state error only for acceleration input and is given by 

1 1 
ess = K =K 

a 

As before, the gain of type -2 system is specified as Ka rather than K. 

..... (3.49) 
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The steady state errors, for various standard inputs for type - 0, type - 1 and type - 2 are 
summarized in Table. 3.1. 

Table. 3.1 Steady state errors for various inputs and type of systems 

Steadystate error ess 

Standard input Type-O Type -1 Type - 2 

Lt Lt Lt 
~= G(s) ~ = s G(s) K = s2 G(s) 

s~O s~O a s~ 0 

1 
Unit step -- 0 0 I+Kp 

1 
Unit velocity ao - 0 

Kv 

1 
Unit acceleration ao ao -

Ka 

If can be seen from Table. 3.1, as the type of the system and hence the number of integrations 
increases, more and more steady state errors become zero. Hence it may appear that it is better to 
design a system with more and more poles at the origin. But if the type of the system is higher than 
2, the systems tend to be more unstable and the dynamic errors tend to be larger. The stability aspects 
are considered in chapter 4. 

3.6.3 Generalized Error Coefficients - Error Series 

The main disadvantage of defining the.steadystate error in terms of error constants is that, only one 
of the constants is finite and non zero for a particular system, where as the other constant's are either 
zero or infmity. If any error constant is zero, the steady state error is infinity, but we do not have any 
clue as to how the error is approaching infinity. 

If the inputs are other than step, velocity or acceleration inputs, we can extend the concept of 
error constants to include inputs which can be represented by a polynomial. Many functions which 
are analytic can be represented by a polynomial in t. Let the error be given by, 

R(s) 
E(s)= I+G(s) 

Eqn. (3.50) may be written as 

Where 

E (s) = Yes). R(s) 

. 1 
Y(s)- --

1+ G(s) 

..... (3.50) 

..... (3.51) 

..... (3.52) 
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Using Convolution theorem eqn. (3:51) can be written as 

t 

e (t) = f Y (''C) r (t - .) d. 
o 
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.. ... (3.53) 

Assuming that r (t) has first n deriratives, r (t - r) can be expanded into a Taylor series, 

, .2" .3" , 
r (t - .) = r (t) - • r (t) + 2! r (t) - 3! r (t) ..... (3.54) 

where the primes indicate time derivatives. Substituting eqn. (3.54) into eqn. (3.53), we have, 

e (t) = J y (.) [r(t)-.r'(t)+~r"(t)-~r"'(t)----l d. 
o 2! 3! 

t ,t "t .2 
= r (t) f y (.) d • - r (t) f • y (.) d • + r (t) f -2' y (.) d • + .... 

o 0 0 • 
.. ... (3.55) 

To obtain the steady state error, we take the limit t ~ ao on both sides of eqn. (3.55) 

e = e (t) = r(t) f y(.)d. - r'(t) f -cy(.)d. + r" (t)-y(.)d ...... Lt Lt [t t .2] 
ss t~ao t~ao 0 0 2! 

.. ... (3.56) 

Q() Q() Q() .2 
ess = rss (t) f y (.) d. - r'ss (t) f -cy (.) d. + rss" (t) f -2 y(.) d. + ..... 

o 0 0 ! 
.. ... (3.57) 

Where the suffix ss denotes steady state part of the function. It may be further observed that the 

integrals in eqn. (3.57) yield constant values. Hence eqn. (3.57) may be written as, 

, C2 " C (n) 
ess = Co rss (t) + C1 r ss (t) + -, r ss (t) + ... + ~ r S5 (t) + 

2. n. 

Where, 

Q() 

Co = f y(.) d. 
o 

Q() 

C1 = - f .y (.) d. 
o 

Q() 

Cn = (_I)n f ~ (.) d. 
o 

...... (3.58) 

.. ... (3.59) 

.. ... (3.60) 

.. ... (3.61) 
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The coefficients Co' Cl' C2, .•. Cn' ... are defined as generalized error coefficients. Eqn. (3.58) is 
known as generalised error series. It may be observed that the steady state error is obtained as a 
function of time, in terms of generalised error coefficients, the steady state part of the input and its 
derivatives. For a given transfer function G(s), the error coefficients can be easily evaluated as 
shown in the following. 

Let yet) = 1:1 Yes) 

00 

Yes) = J yet) e-s'r d. 
o 

Lt 
yes) 

s~o 

00 

J y ('t) d. 
o 

Co 

Taking the derivative of eqn. (3.62) with respect to s, 

We have, 

dyes) = j y (.) (_.) e-st d • 
ds 0 

Now taking the limit of equation (3.64) as s ~ 0, we have, 

Lt dyes) = j y (.) (_ 't) Lt e-5'r d 't 

s~o ds 0 s~O 

o 

Similarly, 

C = Lt d 2y(s) 

2 s~O ds2 

C = Lt d3y(s) 

3 s~O ds3 

C = Lt dny(s) 

n s ~ 0 dsn 

.. ... (3.62) 

..... (3.63) " 

.. ... (3.64) 

..... (3.65) 

..... (3.66) 

..... (3.67) 

..... (3.68) 

Thus the constants can be evaluated using eqns. (3.63), (3.65) and (3.66) and so on and the time 
variation of the steadystate error can be obtained using eqn. (3.58). 
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The advantages of error series can be summarized as, 

1. It provides a simple way of obtaining the nature of steadystate response to almost any arbitrary 
input. 

2. We can obtain the complete steadystate response without actually solving the system differential 
equation. 

Example 3.1 

The angular position 9c of a mass is controlled by a servo system through a reference signal 9r. The 
moment of intertia of moving parts referred to the load shaft, J, is 150 kgm2 and damping torque 
coefficient referred to the load shaft, B, is 4.5 x 103 Nwm / rad / sec. The torque developed by the 
motor at the load is 7.2 x 104 Nw-m per radian of error. 

(a) Obtain the response of the system to a step input of 1 rad and determine the peak time, peak 
overshoot and frequency of transient oscillations. Also find the steadystate error for a constant 
angular velocity of 1 revolution / minute. 

(b) If a steady torque of 1000 Nwm is applied at the load shaft, determine the steadystate error. 

Solution: 

The block diagram of the system may be written as shown in Fig. 3.20. 

Fig. 3.20 Block diagram of the given system 

From the block diagram, the forward path transfer function G (s) is given by, 

KT G(s) - -----'--
s(Js+ B) 

For the given values of Kp J and B, we have 

Thus 

and 

7.2xl04 

G(s) = s(l50s + 4.5 x 103 ) 

16 

s(0.333s + 1) 

Kv= 16 

't = 0.333 sec. 

1 1 

= 2~Kv't = 2.J16 x 0.0333 

= 0.6847 
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(a) 

Control Systems 

= ~K.V - ~ 0.~~33 
= 21.91 rad/sec 

a (t) e -ron! (~ _\ f1=82i 
= 1-~ Sin con "l-o- t+tan V~-o-) 

Peak time, 

= 1 - 1.372 e-15 t Sin (15.97 t + 46.80) 

7t 7t 

= co
n
JI-02 = COd 

7t = -- = 0.1967 sec 
15.97 

Peak over shoot, Mp 

ltll 

= 100 e - ~1-1l2 
= 5.23% 

Frequency of transient oscillations, cod = 15.97 rad/sec 

. 27t 
Steady state error 9R = - rad/sec 

60 
~= 16 

27t 
ess = 60 x 16 = 6.54 x 10-3 rad 

(b) When a load torque of 1000 Nwm is applied at the load shaft, using super position theorem, 
the error is nothing but the response due to this load torque acting as a step input with 

Fig. 3.21 Block diagram of the system with load torque applied 

OR = O. The block diagram may be modified as shown in Fig. 3.21. 

From Fig. 3.21, we have 

1 
Oc(s) = s(Js+B) 

TL(s) 1+ Kr 
s(Js+B) 

1000 
°c( s) = -s(-1-50-s-2 -+-4-.5-x-l-0-3 s-+-7-.-2-x-l 0-4-) 
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Using final value theorem, 

Lt 1000 
s~O s8c (s)= 7.2x104 

= 0.01389 rad 

= 0.796° 

Example 3.2 

The open loop transfer function of a unity feedback system is given by, 

K 
G(s)- --­

s(,tS + 1) 
K, 't>0 
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With a given value of K, the peak overshoot was found to be 80%. It is proposed to reduce the 
peak overshoot to 20% by decreasing the gain. Find the new value of K in terms of the old value. 

Solution: 

Let the gain be KI for a peak overshoot of 80% 

1tIlJ 

e -JHJ2 = 0.8 

1t8 1 
-====J = = In - = 0.223 
Jl-8~ 0.8 

1t2 81
2 = 0.2232 (1 - ( 2) 

Solving for 81' we get 

81 = 0.07 

Let the new gain be Kz for a peak overshoot of 20% 

Solving for 82, 

82 = 0.456 

1 
But 8 = 2JK. 

~ ~ ~.2JK" ~ t, 
82 2 KJ't KJ 
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Example 3.3 

Find the steadystate error for unit step, unit ramp and unit acceleration inputs for the following 
systems. 

1. 
10 

s(O.ls + 1)(0.5s + 1) 
2. 

1000(s + 1) 

(s + 10)(s + 50) 
3. 

Solution: 

1. 

(a) 

10 
G(s) - -----­

s(O.ls + 1)(0.5s + 1) 

Unit step input 

Lt 
~ = G (s) = CXl 

s~O 

1 
ess = -- =0 

l+Kp 

(b) Unit ramp input 

Lt 
~ = s G(s) 

s~O 

Lt 10 
------=10 

s ~ 0 (O.1s + 1)(0.5s + 1) 

1 1 
ess = -=- = 0.1 

Kv 10 

(c) Unit acceleration input 

Lt s2 G(s) = Lt lOs = 0 
s ~ 0 s ~ 0 (O.ls + 1)(0.5s + 1) 

1000 

S2 (s + l)(s + 20) 
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2. 

3. 

1000(s + 1) 
G( s) - ------''------~ 

(s + 10)(s + 50) 

The transfer function is given in pole zero fonn. Let us put this in time constant fonn. 

G(s) = 500(0. Is + 1)(0.02s + 1) 
1000(s+l) 2(s + 1) 

(O.ls + 1)(0.02s + 1) 

Since this is a type zero system we can directly obtain 

K" = 2, ~ = 0 Ka = 0 

The steadystate errors are, 

(a) Unit step input 

1 1 1 
e =--=--=-
551+Kp 1+2 3 

(b) Unit ramp input 

1 1 
e =-=-=00 

55 Ky 0 

(c) Unit acceleration input 

e =-=-=00 
55 Ka 0 

1000 
G(s) - -::----­

- S2 (s + 1)(s + 20) 

Expressing G (s) in time constant fonn, 

1000 50 
G(s) = 20S2 (s + 1)(0.05s + 1) = S2 (s + 1)(0.05s + 1) 

The error constants for a type 2 system are 

K" = 00 ~ = 00 Ka = 50 

The steadystate errors for, 

(a) a unit step input 

1 1 
e=--=-=O 

55 I+K 00 
p 

(b) a unit ramp input 

1 1 
e=-=-=O 

55 Ky 00 

(c) a unit acceleration input 

1 1 
e = -=- =0.02 

55 Ka 50 

111 
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Example 3.4 

The open loop transfer function of a servo system is given by, 

G(s) = 10 
s(0.2s + 1) 

Evaluate the error series for the input, 

Solution: 

3t2 

ret) = 1 + 2t + 2 

10 
G(s)- --­

s(0.2s + 1) 

1 s(0.2s + 1) 
Y( s) = 1 + G(s) = -1-+--:1'-::0-- = -0.---'2S'-=2-+-

S
-+...:....1-0 

s(0.2s + 1) 

The generalised error coefficients are given by, 

Lt 
Co = s~O Yes) 

C1 

C1 

Lt s(0.2s + 1) 
--'-:----'-- = 0 

s~O 0.2S2 +s+lO 

Lt dyes) 

s~O ds 

Lt (0.2s2 + s + 10)(0.4s + 1) - s (0.2s + 1)(O.4s + 1) 

s~O (0.2s2 + s + 10)2 

Lt lO(O.4s + 1) 

s~O (0.2s2 + s + 10)2 

10 
= - =0.1 

102 

C = Lt 
2 

s~O 

d2y(s) 

ds 2 

Lt 

s~O 

(0.2s2 + s + 10)2 (4) -1 O(O.4s + 1)[2(0.2s2 + s + 10)(0.4s + 1)1 
(0.2s 2 + s + 10)4 

400-10(20) 
------:-'-----'- = 0.02 

(10)4 



Time Response Analysis of Control Systems 

The input and its deriatives are, 

3t2 

r(t) = 1 + 2 t + -
2 

6t 
r' (t) = 2 + - = 2 + 3t 

2 

r" (t) = 3 

r'" (t) = 0 = riv (t) = rV (t) 

The error series is given by, 

C 
ess (t) = Co rss (t) + C, rss' (t) + 2 ~ rss" (t) 

e (t) = 0 (1 + 2t + 3t2) + 0.1 (2 + 3t) + 0.02 (3) 
ss 2 2 

= 0.23 + O.3t 

3.7 Design Specifications of a Control System 
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A second order control system is required to satisfy three main specifications, namely, peak overshoot 
to a step input (Mp), settling time (ts) and steadystate accuracy. Peak overshoot is indicative of 
damping (b) in the system and for a given damping settling time indicates the undamped natural 
frequency of the system. The steadystate accuracy is specified by the steadystate error and error can 
be made to lie within given limits by choosing an appropriate error constant Kp, Kvor Ka depending 
on the type of the system. If any other specifications like rise time or delay time are also specified, 
they must be specified consistent with the other specifications. Most control systems are designed to 
be underdamped with a damping factor lying between 0.3 and 0.7. Let us examine the limitations in 
choosing the parameters of a type one, second order system to satisfy all the design specifications. 

The expressions for 0, ts and e ss are given by, 

1 
0= -== 

2~Kv't 

4 
t =-­
sown 

..... (3.69) 

..... (3.70) 

ess = K ..... (3.71) 
v 

In a second order system, the only variables are Kv and T. Even if both of them are variable, we 
can satisfy only two out of the three specifications namely, 0, ts and ess' Generally, we are given a 
system for which a suitable controller has to be designed. This means that the system time constant 
is fixed and the only variable available is the system gain Ky. By using a proportional controller, the 
gain can be adjusted to suit the requirement of the steadystate accuracy. If Ky is adjusted for an 
allowable limit on steadystate error, this value of Ky is usually large enough to make the system 
damping considerably less, as given by eqn. (3.69). Thus the transient behaviours of the system is 
not satisfactory. Hence suitable compensation schemes must be designed so that the dynamic response 
improves. Some control schemes used in industry are discussed in the next section. 
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3.7.1 Proportional Derivative Error Control (PD control) 

A general block diagram of a system with a controller is given in Fig. 3.22. 

Controller System or plant 
R(s) 

~f,-__ E(_S_) ~_~_G_c_(s_)_~_M~_(--'S_)~~~~~~_[0[]_G_(_S)_I-~~~~~--l~~C(_S) 
Fig. 3.22 General block diagram of a system with controller and unity feed back 

For a second order, Type 1 system, 

K' 
G(s) - y 

s('ts + 1) 

Control Systems 

By choosing different configurations for the controller transfer function Gc (s) we get different 
control schemes. The input to the controller is termed as error signal or most appropriately, actuating 
signal. The output of the controller is called as the manipulating variable, m (t) and is the signal given 
as input to the system or plant. Thus, we have, 

met) = Kp (e(t) + KD d:~t)) 

and M(s) = Kp (1 + KD s) E (s) 

The open loop transfer function with PD controller is given by, 

Go (s)= Gc (s) G (s) 

Kp (1 + KDs )K~ 

s('ts + 1) 

The closed loop transfer function of the system is given by, 

Kp.K~ (KDs+1) 

T(s) = __ (:;-----''t'---_---.),---__ 
2 1 + KpKDK~ KpK~ 

s +s +---
't 't 

If we define 

K 
-y (KD s+1) 

T(s) = __ .,:..'t ------,.)--
2 (1+KyKD Ky s +s +-

't 't 

The damping and natural frequency of the system are given by, 

, 1 + KyKD KD fK:-
8 = 2~Ky 't = 8 + 2 ~~ ..... (3.72) 
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0) I = ~Kv = 0) 
n t n 

..... (3.73) 

By a suitable choice of the proportional controller gain Kp (Amplifier gain), the steadystate error 
requirements can be met. As seen earlier, such a choice of Kp usually results in a low value of 
damping and hence this can be increased to a suitable value by of a proper choice of Ko' the gain of 
the derivative term in the controller, as given by the eqn. (3.72). It can be observed from eqn. (3.73) 
that the natural frequency is not altered for a given choice ofKp. Hence the settling time is automatically 
reduced since (tJn is fixed and 8 for the compensated system has increased. 

It may also be observed that, adding a derivative term in the controller introduces a zero in the 
forward path transfer function and we have seen that the effect of this is to increase the damping in 
the system. 

3.7.2 Proportional Integral Controller (PI Control) 

If the amplifier in the forward path is redesigned to include an integrator so that the output of the 
controller is given by, 

or 

We have, 

Where 

and 

and 

m (t) = Kp (e(t) + K\ t e(t)dt 1 
M (s) = Kp (1 + ~\ ) E(s) 

Go (s) = Gc (s) G (s) 

1 
T =-

1 K\ 

Kp(s+K\)K~ 
S2 (tS + 1) 

Kv(T\s + 1) 

s2(ts+l) 

..... (3.74) 

..... (3.75) 

..... (3.76) 

From eqn. (3.75) we observe that the type of the system is changed from Type 1 to type 2 and 
hence the steadystate error for a unit velocity input is reduced to zero. Hen& an integral controller is 
usually preferred wherever the steadystate accuracy is important. But the dynamics of the system 
can not be easily obtained, as the system order is increased from two to three, because of thl! 
introduction of integral control. 
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Moreover, the stability of the sytem (as will be discussed in chapter 4) may be affected adversely 
if the system order is increased. Since the system is of third order, it is usually designed to have two 
complex poles nearer to the imaginary axis and one real pole, as for away from origin as desirable. 
The response due to the complex poles dominate the overall response and hence the damping factor 
of these poles will have to be properly chosen to get a satisfactory transient response. 

3.7.3 Proportional, Integral and Derivative Controller (PID Control) 

An integral control eliminates steadystate error due to a velocity input, but its effect on dynamic 
response is 'difficult to predict as the system order increases to three. We have seen in sector 3.7.1 
that a derivative term in the forward path improves the damping in the system. Hence a suitable 
combination of integral and derivative controls results in a proportional, integral and derivate control, 
usually called PID control. The transfer function of the PID controller is given by, 

Gc(s)=Kp (I+KoS+~r) 
The overall forward path transfer function is given by, 

KpK~(1 + Kos + ~r J 
G (s) - ------''------'-

o s('rs+l) , 

and the overall transfer function is given by, 

KpK~ (KOS2 + s + Kr) 
T(s) = 3 2 I 

'ts +s (I+KpKo)+sKpKy s+KpKr 

Proper choice of Kp, KD and Kr results in satisfactory transient and steadystate responses. The 
process of choosing proper Kp, KD, at Kr for a given system is known as tuning of a P ID controller. 

3.7.4 Derivative Output Control 

So far, we have 'discussed controllers in the forward path for which the input is the error. Some times 
control is provided by taking a signal proportional to the rate at which the output is changing and 
feeding back to the amplifier in the forward path. A typical block diagram fo such a system, employing 
rate feedback, as it is often known, is given in Fig. 3.23. 

R(s) + + C(s) 

Fig. 3.23 (a) Block diagram of a system employing rate feedback 
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The inner loop provides the desired rate feedback as its output is proportional to dc(t) . Simplifying 
dt 

the inner loop, we have, 

E(s) 

Fig. 3.23 (b) Simplified block diagram of Fig. 3.23 (a) 

The forward path transfer function is given by, 

KA 

Where, 

Thus the new damping factor is given by, 

0' 
.2~Kv''t' - 2 KA 't 

l+Kt KA 'l+KtKA 

_ l+K\KA 

- 2~KA't 

= (1 + ~ KA) 0 

The product, K' v 0' is given by, 

K' 0' = KA =.!JKA 

y 2~KA't 2 't 

or KA = 4 (K'yO'Y 't 

C(s) 

..... (3.77) 

..... (3.78) 

..... (3.79) 

..... (3.80) 

..... (3.81) 

..... (3.82) 

..... (3.83) 
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If the values of K 'v and () I are specified, the amplifier gain (KA) can be adjusted to get a suitable 
value using eqn. (3.82). For this vlaue of KA' the rate feedback constant ~ is given by, using 
eqn.3.78, 

If rate feedback is not present, 

~=KA 

1 
and () = --;== 

2~KA't 

..... (3.84) 

..... (3.85) 

With rate feedback, if same velocity error constant is specified, comparing eqn. (3.78) with eqn. 
(3.85), we see that the amplifier gain, KA has to be more. Thus aJn I given by eqn. (3.82) will be 
more. Hence the derivative output compensation increases both damping factor and natural frequency, 
thereby reducing the settilng time. 

3.5 Example 

Consider the position control system shown in Fig. 3.24 (a). Draw the block diagram of the system. 
The particulars of the system are the following. 

Total Moment oflnertia referred to motor shaft, J = 4 x 10-3 kgm2. 

Total friction coefficient referred to motor shaft, f = 2 x 10-3 Nwm[rad[sec 

Motor 

L...-______ r="'FLK_A~---.:R J:::;:a::::..-

I 

A.;r }- _ 1-___ T"hogen"":;:.t .... :_. 

K 

Fig. 3.24 (a) Schematic of a position control system. 

Motor to load Gear ratio, n = 8L = _1_ 
8M 50 

e 
Load to potentiometer gear ratio, e L = 1 

c 
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Motor torque constant, 

Tachogenerator constant, 

Sensitivity of error detector, 

Amplifier gain, 

KT = 2 Nw-m I amp 

~ = 0.2V I rad I sec 

Kp = 0.5V I rad. 

KA AmpsN. (variable) 
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(a) With switch K open, obtain the vlaue of KA for a steadystate error of 0.02 for unit ramp 
input. Calculate the values of damping factor, natural frequency, peak overshoot and settling 
time. 

(b) With switch K open, the amplifier is modified to include a derivative term, so that the armature 
current ia (t) is given by 

ia (t) = KA (e(t) + KD d~~t)) 
Find the vlaues ofKA and Ko to give a steadystate error within 0.02 for a unit ramp input and 
damping factor of 0.6. Find the natural frequency and settling time in this case. 

(c) With switch K closed and with proportional control only, find the portion of tachogenerator 
voltage to be fedback, b, to get a peak overshort of 20%. Steadystate error should be less 
than 0.02 for a unit ramp input. Find the settling time and natural frequency. 

Solution: The block diagram of the system is given in Fig. 3.24 (b). 

Fig. 3.24 (b) Block diagram of the position control system of Fig. 3.24 (a). 

With switch K open, 

0.5 x 2KA 
50 . s(4xlO-3s+2xlO-3 ) 

50x2xl0-3s(2s+1) 

s(2s + 1) 

10KA 

s(2s + 1) 
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Now 

damping factor, 

Natural frequency, 

Peak overshoot, 

Settling time, 

ess = 0.02 

1 1 

KA = 10xO.02 = S 

K.. = 10 KA = SO 

1 1 1 
(5 = = =- O.OS 

2~Kv 't 2.JSO x 2 20 

ro = fK: = {SO 
n ~-;- f"2 

= S.O rad/sec. 
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M = e - ~1-82 = 8S.4S% p 

4 4 
t = - = x S = 16 sec 

S (5ron O.OS x S 

Control Systems 

Thus, it is seen that, using proportional control only (Adjusting the amplifier gain K A) the steadystate 
error is satisfied, but the damping is poor, resulting in highly oscillatory system. The settling time is 
also very high. 

(b) With the amplifier modified to include a derivative term, 

ia(t) = KA [e(t) + Ko d~~t)] 
The forward path transfer function becomes, 

KpKA(1+Kos)KTn 0.SxKA(1+Kos)2 10KA(1+Kos) 
G(s) = s(Js + f) = 2 x 10-3 x SOs(2s + 1) = s(2s + 1) 

To satisfy steadystate error requirements, KA is again chosen as S. The damping factor is 
given by, 

1 + SOKo 
0.6 = 2.JSO x 2 

From which we get, 

Ko= 0.22 
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~v ~o co = - = - = 5 rad/sec 
n 't 2 

4 
ts = 0.6 x 5 = 1.333 sec 

The derivative control increases the damping and also reduces the setlling time. The natural 
frequency is unaltered. 

(c) With switch K closed and with only proportional control, we have, 

G(s) = K:.n [JS + f ~~~~TKtb 1 
0.5 [ 2KA 1 

= 50s 4xlO-3s+2xlO-3 +2xO.2xKAb 

The closed loop transfer function is given by, 

KA 
T(s) = --=-~---'-'---:----

0.2S2 +(0.1+20KAb)s+KA 

The steadystate error, ess = 0.02 

1 
~= - =50 

0.02 

The peak over shoot, 

7t6 

Mp = e - )1-6
2 = 0.2 

(5 = 0.456 

From the expression for G (s), we have, 

Lt 
~ = s~ 0 s G(s) 

KA KA 
~ = 50(2 x 10-3 +O.4KAb) = 0.1 +20KAb 

From the expression for T (s), we have 

0.1 + 20K Ab 
(5 = 0.2 
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Taking the product of ~ and 0, we have 

KA 0.1+20KAb 
~o = x--===-

0.1 + 20KAb 2~0.2KA 

KA 

2~0.2KA 
But ~ = 50 and 0 = 0.456 

x 2 _ K~ 
(50 0.456) - 4xO.2KA 

KA = 4 x 0.2 (50 x 0.456)2 = 415.872 

We notice that the value of KA is much larger, compared to KA in part (a). Substituting the 
value of KA in the expression for ~, we have, 

415.872 
50=-------

0.1 + 20x 415.872x b 
b can be calculated as, 

b = 0.001 

{K; ~415.872 
The natural frequency ron = V02 = 0.2 = 45.6 rad/sec 

Comparing ron in part (a), we see that the natural frequency has increased. Thus the setlling 
time is redued to a value give by, 

4 4 
t = -= = 0.1924 sec. 
s oron 0.456 x 45.6 

This problem clearly illustrates the effects of P, P D and derivative output controls. 

Example 3.6 

Consider the control system shown in Fig. 3.25. 

Synchro 
• Ks 

Fig. 3.25 Schematic of a control system for Ex. 3.6 

Amplifier 
gainKA 

ac 8L = J.-
~ 8M 100 

G7{] 
servo 
motor 

9L -=1 
9c 
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The sensitivity of synchro error detector Ks = 1 V I deg. The transfer function of the two phase 
servo motor is given by, 

aMeS) = 10 
Vc(s) s(1+0.1s) 

(a) It is required that the load be driven at a constant speed of 25 rpm at steady state. What 
should be the gain of the amplifier, KA' so that the error between output and input position 
does not exceed 2 deg under steadystate. For this gain what are the values of damping 
factor, natural frequency and settling time. 

(b) To improve the transient behavior of the system, the amplifier is modified to include a derivative 
term, so that the output of the amplifier is given by, 

Vc (t) = KA e (t) + KA Td e (t) 
Determine the value of T D so that the damping ratio is improved to 0.5. What is the settling time 

in this case. 

Solution: The block diagram of the system is given in Fig. 3.26 

Fig. 3.26 The block diagram of system shown in Fig. 3.25 

The forward path transfer function of the system is, 

KsKA G(s) - -~-'-'--
10s(1+0.1s) 

180 
Ks = 1 V/deg = - V/rad 

1t 

180 x K A G(s) = -----=-~ 
101ts(1+0.1s) 

10 

s(1 + O.1s) 

Steady state speed 
25 X 21t 51t 

= 25 rpm = rad I sec. = -6 rad I sec 
60 

2 1t 
Steady state error, ess = 2 deg = 180 x 1t = 90 rad 
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For the given system, 

~= 

ess = 

But ess 

Lt 

s-+O 

Lt 

s-+O 

ISKA 
1t 

51t 
--= 
6Kv 

1t 

90 

51t2 

s G(s) 

sxlS0x KA 

1ts(1 + 0.ls)10 

51t X 1t 

6 x lSKA 

1t 
.. =-

10SKA 90 

From which, we get, KA = 13.1 

75 
G (s) - ---

c s(1+0.1s) 

T(s) = Sc(s) = 75 
SR(S) 0.ls2 +s+75 

750 

s2+10s+750 

con = .J750 = 27.39 

C3 1 1 = 0.IS26 
2~Kv 't 2.J75 x 0.1 

4 4 
t = - = = O.S sec 
s C3con 0.IS26x27.39 

(b) When the amplifier is modified as, 

Vc (t) = KAe (t) + KA TD e(t) 

The open loop transfer function becomes, 

KsKA (1 + TDs) 
G(s) = 10s(0.ls+l) 

Control Systems 
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Se(s) KsKA(1+Tos) 
T(s) = SR (s) = S2 + (10 + KsKA To)s + KsKA 

180 x 13.1(1 + Tos) 
---,--------~--~~------ x -

(
180 ) 180 7t 

S2 + 10+--;-xI3.1To s+--;-xI3.l 

S2 +(10+750To )s+750 

ron = .J750 = 27.39 

28 ron = 10 + 750 TD 

T = 28ron -10 = 2 x 0.5 x 27.39 -10 = 0.0232 
D 750 750 

4 4 
t5 = 8ro

n 
= 0.5 x 27.39 = 0.292 see 
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Thus, we see that, by including a derivative tenn in the amplifier, the transient perofrmance is improved. 
It may also be noted that ~ is not changed and hence the steady state error remains the same. 

Problems 

3.1 Draw the schematic of the position control system described below. 

Two potentiometers are used as error detector with SR driving the reference shaft and the 
load shaft driving the secind potentiometer shaft. The error signal is amplified and drives a 
d c. Servomotor armature. Field current of the motor is kept constant. The motor drives the 
load through a gear. 

Draw the block diagram of the system and obtain the closed loop transfer function. Find the 
natural frequency, damping factor, peak time, peak overshoot and settling time for a unit step 
input, when the amplifier gain KA = 1500. The parameters of the system are as follows: 

Potentiometer sensitivity Kp = 1 V Irad 

Resistance of the annature 

Equivalent Moment of Inertia at motor shaft 

Equivalent friction at the motor shaft 

Motor torque constant 

Gear ratio 

Motor back e.m.f constant 

Ra = 20 

J = 5 x 10-3 kg-m2 

B = 1 x 10-3 NW/rad/sec 

KT = 1.5 Nro mlA 

1 
n= --

10 
Kb = 1.5 V Irad/sec 
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3.2 A position control system is shown in Fig. P 3.2 

<"E---,--- - - - - - --

R ~Ir 
a 

Fig. P3.2 

24 
Sensitivity of the potentiometer error detection Kp = - V Irad 

1t 

Amplifier gain 

Armature resistance 

Motor back e.m.f constant 

Motor torque constant 

Moment of Inertia of motor referred to motor shaft 

Moment of Inertia of load referred to the output shaft 

Friction coefficient of the load referred to the output shaft 

N . 1 
_1=_ 

N2 10 
Gear ratio 

KAVN 

Ra = 0.2 n 
Kb = 5.5 x 10-2 V/rad/sec 

KT = 6 x 10-5 N-mlA 

1m = 10-5 Kg m2 

1L = 4.4 x 10-3 Kgm2 

B = 4 x 10-2 Nmlrad/sec v 

(i) If the amplifier gain is 10VN obtain the transfer function of the system C(s) = 8L (s) . 
R(s) 8R (s) 

Find the peak overshoot, peak time, and settling time of the system for a unit step input. 

(ii) What values ofKA will improve the damping factor to 0.707 

(iii) What value of KA will give the frequency of oscillations of 9.23 rad/sec to a step input. 

3.3 The open loop transfer function of a unity feed back control system is given by, 

K 
G(s)- ---

seTs + 1) 

If the maximum response is obtained at t = 4 sec and the maximum value is 1.26, find the 
values if K and T. 
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3.4 A unity feedback system has the plant transfer function 

C(s) 10 
O(s)- -----

1 -M(s)-s(s+2) 

A Proportional derivative control is employed to control the dynamics of the system. The 
controller characteristics are given by, 

de(t) 
met) = e(t) + Ko dt 

where e(t) is the error. 

Determine 

(i) The damping factor and undamped natural frequency when Ko= 0 

(li) The value of Ko so that the damping factor is increased to 0.6. 

3.5 Consider the system shown in Fig. P 3.5. 

Fig. P3.5 

(i) With switch K open, determine the damping factor and the natural frequency of the 
system. If a unit ramp input is applied to the system, find the steady state output. Take 
KA =5 

(ii) The damping factor is to be increases to 0.7 by including a derivative output compensation. 
Find the value of~ to achieve this. Find the value of undamped natural frequency and 
the steady state error due to a unit ramp input. 

(iii) It is possible to maintain the same steady state error for a unit ramp input as in part (i) 
by choosing proper values of KA and ~. Find these values. 

3.6 In the system shown in Fig. P 3.6 find the values of K and a so that the peak overshoot for 
a step input is 25% and peak time is 2 sec. 

C(s) 

Fig. P3.6 
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3.7 Determine the values of K and a such that the damping factor is 0.6 and a settling time of 
1.67sec. 

Fig. P3.7 

Also find the step response of the system. 

3.8 Find the steadystate errors for unit step, unit velocity and unit acceleration inputs for the 
folloWing systems. 

15 
(i) s(s + 1)(s + 5) 

100 
(iii) s2(0.ls + 1)(.Ols + 1) 

(ii) 

(iv) 

10(0.ls+l) 

(0.02s + 1)(0.2s + 1) 

(s+2)(s+5) 

s(0.2s + 1)(0.6s + 1) 

3.9 In the system shown in Fig P 3.7 fmd the value of K and a such that the damping factor of 
the system is 0.6 and the steady state error due to a unit ramp input is 0.25. 

3.10 For the unity feedback system with, 

10 
G(s) =--

s+1O 
Find the error series for the input, 

3t2 

vet) = 1 + 2t + 2 
3.11 Find the steadystate error as a function of time for the unity feedback system, 

100 
, G(s) = s(l + O.ls) 

for the following inputs. 

t 2 

(a) r (t) = 2" u(t) 

-djl-

(b) 
t 2 

r (t) = 1 + 2t + -. 
2 



4 Stability of Systems 

4.1 Introduction 

It is usually not desirable that a small change in the input, initial condition, or parameters of the 

system produces a very large change in the response of the system. If the response increases 

indefinitely with time the system is said to be unstable. Stability is an important property that a 

system is required to possess. It is not only essential to design a system to obtain the desired 

response, it is also necessary to design a system which is stable. Suppose we have a control system 

which is designed to drive a load at a desired speed. For some reason ifthere is a small change in the 

load on the motor, the motor speed should not increase indefinitely. 

In general there are two concepts of stability. The first one is known as a Bounded Input Bounded 
Output stability (BIBO). According to this concept, if a bounded input is given to the system, the 

output should be bounded. The second one is defined with no input to its system. If an initial 

condition is applied to the system, the system should return to its eqUilibrium condition, which is 

usually the origin. For linear time invariant systems the two concepts are equivalent. For non linear 

systems, the determination of stability is more complicated. Even if a system is found to be stable for 

a certain bounded input it may not be staple for another bounded input. If a nonlinear system is found 
to be stable for certain initial condition, it may not be stable when a bounded input is given. Usually 

nonlinear system stability is studied for autonomous systems i.e., systems without input. In contrast 

to this, for a linear, time invariant system, there are simple criteria for determining the stability. In this 

chapter, we will deal with an algebraic criterion for determining the stability of linear, time invariant 

systems. 
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4.2 Stability Preliminaries 

The two concepts of stability are equivalent for linear time invariant systems. To see this, let us 
consider the output of a linear, time invariant system, given by, 

t 

c(t) = f he-t) ret - .)d. . .... ( 4.1) 
o 

where h(t) is the impulse response of the system, 

and r( t) is the input to the system. 

We know that [
C(S)] h(t) = l';-1[T(s)] = l';-I -
R(s) 

and 
b m b m-l b 

oS + 1 S + ... + 
T(s) = n n-l m 

aos +a1s + ... an 

..... (4.2) 

If the input is bounded, i.e., Ir(t)1 ~ Rl' we have from eqn. (4.1). 

Ic(t)1 = [t h (') ret - 't) d't[ 

t 

~ f Ih('t)llr(t - .)1 d. 
o 

t 

~RI if Ih('t)ld't ..... (4.3) 
o 

For a stable system, bounded input should produce bounded output. Hence from eqn. (4.3). 

t 

Ic(t)1 = RI I Ih('t)ld't ~ ~ ..... (4.4) 
o 

t 

Thus the system is Bmo stable, if I Ih('t)1 d't is finite or h(t) is absolutely integrable. If Ih (t)1 is 
o 

plotted with respect to time, this condition means that the area bounded by this curve and time axis 
must be finite between the limits t = 0 and t = 00. Thus the stability of the system can be ascertained 
from the impulse response or the natural response of the system which is independent of the input. 

t 

If I Ih( 't)1 d't is bounded the response for any initial condition will also be bounded and the system will 
o 

return to its equilibrium condition. 

Since the nature of impulse response '1(t) depends on the location of poles of T(s), the transfer 
function T(s) is given by eqn. (4.2) and can be written as, 

N(s) 
T(s) = D(s) ..... (4.5) 
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D(s) = 0 is known as the characteristic equation of the system and the poles ofTCs) are the roots 
of D(s) = O. The roots of D(s) may be classified as : 

(i) Real roots at s = cr 

K 
The transfer function T(s) contains terms like -- which give rise to terms like Keat in the 

s-cr 
impulse response. If cr is positive, the exponential term increases indefinitely with time and 
h(t) is unbounded. If cr is negative, the response h(t) decreases with time and h(t) ~ 0 as 
t ~ 00. The area under the curve of h(t) is bounded. 

If real roots have multiplicity m, T( s) contains terms of the form, 

Kr 

( 
l)i i = 1, 2, ..... m 

s -cr 
which on inversion, gives rise to terms of the form Ai t1

- 1 eat, i = 1, 2, ..... m 

If cr is positive, these terms make h(t) unbounded. On the other hand if cr is negative, the 
t 

response dies down as t ~ 00 and Jlh(t)1 dt is bounded. 
o 

( .. ) C I' . I tho ( ) . lik As + B 11 omp ex conjugate roots at s = cr + Jco. n IS case T s contams terms e 2 2 
(s - cr) + co 

therefore, h(t) contains terms like Keat Sin (cot + ~) 

and 

If cr is positive i.e., if the real part of the root is positive, the amplitude of sinusoidal oscillations 
increases indefinitely and h(t) will be unbounded. If cr is negative h(t) will have oscillations 
whose amplitudes tend to zero as t ~ 00 and thus, h(t) will be bounded. 

If the complex conjugate roots are repeated with multiplicity m at s = cr + jco, 

T(s) will contain terms like ~ Ai
S 
+ B1 J i = 1, 2, ......... m. 

(s - cr)2 + co2 
I 

which yields, on inversion, 

C1 tl-1Keat Sin (cot + ~.), i = 1,2, ..... m 

In this case also, if the real part of the complex root a is positive, the response is unbounded 
and if it is negative, the response is bounded. 

(iii) Roots at origin. 

T(s) will have a term K , which gives rise to a constant term Ku(t), as the response. In this 
s 

co 

case, although h(t) = Ku(t) is bounded, J Ih(t)1 dt is not bounded. If repeated roots at origin are 
o 

present in T(s), it will have terms like, 

Kli 
SI 

i = 1,2, ..... m 

which give rise to terms in the impulse response h(t), of the form, 

C1tl- 1 fori=1,2, .... m 

which clearly results in unbounded h(t). 
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(iv) Purely imaginary roots at s = jOJ 

As+B 
Roots on imaginary axis will contribute terms like in T(s) and their inversion yields 

S2 + ro 2 

terms of the form, 
C Sin (rot + ~) 

00 

which have constant amplitude. In this case also even though h(t) is bounded f Ih(t) I dt is 
o 

not bounded. 

If the imaginary roots are repeated, they yield terms like ~iS + ~i. for i = 1,2, .... m in h (t). 
(Si + ro y 

These terms clearly make h(t) unbounded as t ~ 00. 

To summarise, if the roots are negative, or have negative real parts if they are complex, the 
00 

impulse response h(t) is bounded and flh(t)1 dt is also bounded. The system will be BIBO 
o 

stable for these roots occuring in the left half of s-plane even if they are repeated. If the roots 
are positive, or they have positive real parts if complex, the response is unbounded and hence 
the system is unstable. The response is bounded if the roots are purely imaginary but simple. The 
system is classified as marginally or limitedly stable, since the response will be oscillatory with 
constant amplitude. The location of the roots and corresponding responses are given in 
Fig. 4.1. The response is indicated near the corresponding root. 

L 

x x x 

Fig. 4.1 Location of roots of characteristic equation and corresponding responses. 
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Based on the above observations regarding location of rOots of the characteristic equation and 
stability of the system, the s-plane can be divided into two regions. The left side of imaginary axis is 
the stable region and if roots of characteristic equation occur in this half of s-plane, the system is 
stable. The roots may be simple or may occur with any multiplicity. On the other hand, even if simple 
roots occur in the right half of s-plane, the system is unstable. If simple roots occur on the ja>-axis, 
which is the boundary for these two regions, the system is said to be marginally or limitedly stable. 
If roots onj a>-axis are repeated, the system is unstable. The stable and unstable regions of s-plane are 
shown in Fig. 4.2. 

jro 
s-plane 

Stable Unstable 

Fig. 4.2 Demarcation of stable and unstable regions of s-plane. 

Hence, determination of stability of a linear time invariant system boils down to determining 
whether any roots of the characteristic equation or poles of transfer function lie in the right half of 
s-plane. One obvious method of determining stability of a system is to find all the roots of 
D(s) = aa sn + a l sn - 1 + ..... + an' 

For a polynomial of degree n > 2, it is difficult to find the roots analytically. Numerical methods 
for root determination for higher order polynomials is quite cumbersome. Hence, algebraic criteria 
are developed to find out if any roots lie in the right half of s-plane. The actual location of the roots is 
unimportant. 

4.3 Necessary Conditions for Stability 

In section 4.2 we have seen that the system will be stable if the roots of the characteristic equation lie 
in the left half of s-plane. The factors of the characteristic polynomial D(s) can have terms like 

(s + 0), (s + O"k)2 + rof 

where 0"1 are positive and real. Thus 

D(s) = ao sn + a
l 

sn - 1 + ..... +an ..... (4.4) 

= ao IT (s + 0"1) IT {(s + O"k)2 + rof} ..... (4.5) 

Since 0"1 and O"k are all positive and real the product in eqn. (4.5) results in all positive and real 
coefficients in the polynomial of s. Thus if the system is stable all the coefficients, ai' must be 
positive and real. 

Further, since there are no negative terms involved in the product of eqn. (4.5), no cancellations 
can occur and hence no coefficient can be zero. Thus none of the powers of s in between the highest 
and lowest powers of s must be missing. But, if a root is present at the origin an is zero. 
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There is one exception to this condition, namely, all the odd powers of s, or all the even powers 
of s, may be missing. This special case occurs if the characteristic equation contains roots only on 
thejaraxis. If there is no root at the origin, the characteristic polynomial is given by 

O(s) = IT (s2 + ro?) 

which will yield a polynomial with even powers of s only. On the other hands, if it has a root at the 
origin, in addition to roots onjaraxis only, O(s) is given by, 

O(s) = sIT (s2 + ro?) 

and O(s) will have only odd powers of s. Since simple roots on jaraxis are permitted, we may 
conclude that if any power of s is missing in O(s), all even powers or all odd powers of s may be 
missing for stable systems. In conclusion, it can be stated that the necessary conditions for stability 
of a system are : 

1. The characteristic polynomial O(s) = 0 must have all coefficients real and positive. 

2. None of the coefficients of the polynomial should be zero except the constant an. 

3. None of the powers of s between the highest and lowest powers of s should be missing. 
However all odd powers of s, or all even powers of s may be missing. 

It is to be emphasised that these are only necessary conditions but not sufficient. All stable systems 
must satisfy these conditions but systems satisfying all these conditions need not be stable. 

For example, 

O(s) = s3 + s2 + 3s + 24 = 0 

= (s - 1 + j2.J2)(s - I - j 2.J2)(s + 3) = 0 

Eventhough, O(s) has all its coefficients positive and no power of s is missing, the 
complex roots have real parts which are positive. Hence the system with the above characteristic 
equation is not stable. 

The necessary conditions help us to eliminate polynomials with negative coefficients or missing 
powers of s by visual inspection only. If the characteristic equation satisfies all the necessary conditions, 
it is a possible candidate for examining further, for stability. A. Hurwitz and E.J. Routh have 
independently established the conditions for stability of a system without actually finding out the 
roots. The criteria is known as Routh-Hurwitz criterion for stability. 

4.4 Routh - Hurwitz Stability Criterion 

This criteria determines how many roots of the characteristic equation lie in the right half of s-plane. 
This test also determines all the roots on thejaraxis, so that their multiplicity can be found out. The 
polynomial coefficients are arranged in an array called Routh array. Let the characteristic equation be 
given by, 
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The Routh array is constructed as follows. Each row is identified in the descending order of powers 
of s. The first row contains coefficients of alternate powers of s starting with the highest power sn. 
The second row contains coefficients of alternate powers of s starting with the second highest power 
sn - I. The other rows are constructed in a systematic way as indicated in the procedure given below. 

sn 
1Io~~ _.a4 an 

sn-I a
l
_ :::~:::, ... a

s 
sn-2 bKb~ - yb3 
sn- 3 cc c2 ' "c3 
sn-4 d l dz 

Sl 11 

sO a 
n 

The coefficients in sn - 2 row are obtained as follows: 

b = 
a,a2 -aOa 3 

I a, 

b = 
a,a4 -aoas 

2 a, 

a, 
The coefficients of sn - 3 row are obtained in a similar way, considering the coefficients of the 

previous two rows as follows : 

b, a3 -~ b2 
c = I b, 

b l as - ~~ 
and so on. c = 2 b l 

Similarly, the coefficients of any particular row can be obtained by considering the previous two 
rows and forming the products as before. If any element in a row is missing, it is regarded as zero. 
There will be only 2 entries in the s2 row and one element each in s I and sO rows. The Routh array is 
constructed until the sO row is computed. The Routh Hurwitz criterion is stated as follows : 

For a system to be stable, it is necessary and sufficient that each entry in the first column of Routh 
array, constructed from the characteristic equation, be positive. If any entry in the first column is 
negative, the system is unstable and the number of roots of the characteristic equation lying in the 
right half of s-plane is given by, the number of changes in the sign of entries in the first column of 
Routh array. 
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Observe that the Routh Hurwitz criterion tells us whether the system is stable or not. It does not 
give any indication of the exact location of the roots. 

Example 4.1 

Consider the characteristic equation, 

D(s) = S4 + 2s3 + 8s2 + 4s + 3 = 0 

Comment on its stability. 

Solution: 

Let us construct the Routh array. 

S4 1 

s3 2 

s2 
2x8-1x4 

2 

sl 
6x4-2x3 

6 
sO 3 

=6 

=3 

8 

4 

2x3-1xO 

2 
=3 

3 

o (.: Since there is no entry in the 3rd 

column it is taken as zero) 

(The entry in this row will always be an) 

Consider the entries in the first column, 1,2,6,3,3. All are positive and therefore, the system is 
stable. 

Example 4.2 

Examine the characteristic equation 

D( s) = s4 + 2s3 + s2 + 4s + 2 = 0 

for stability. 

Solution: 

Constructing the Routh array, we have 

S4 1 1 2 

s3 2 4 

S2 
2-4 
--=-1 2 

2 

SI 8 

sO 2 

The first colunm entries are 1, 2, -1, 8 and 2. One of the coefficients is negative and hence the 
system is unstable. Also, there are two sign changes, 2 to - 1 and -1 to + 8. Hence there are two 
roots of the characteristic equation in the right half of s-plane . 

• 
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4.4 Special Cases 

There are two special cases which occur in the construction of Routh array. Whenever they occur it 
is not possible to complete the table, in a routine way. Let us see how these special cases can be 
tackled in completing the table. 

(i) First case : 

Sometimes, the first entry in a particular row may tum out to be a zero. Since the calculation of 
next row entries involves division by this zero, the process of constructing the Routh array stops 
there. To overcome this difficulty, the following procedures may be adapted. 

(a) First method: 

Replace the zero in that row by E. Proceed with the construction of the table. Consider the 
entries of the first column of the array by letting E ~ 0 from the positive side. 

Example 4.3 

Consider the characteristic equation 

D(s) = s5 + S4 + 3s3 + 3s2 + 6s + 4 

Comment on the stability. 

Solution: 

Construct the Routh array. 

s5 

1x3-1x3 

1 
=0 

3 

3 

6-4 
-1- =2 

6 

4 

Now there is a zero in the s3 row in the first column. Replace this by E and proceed. 

S5 3 6 

S4 3 4 

s3 E 2 

s2 
3E-2 

E 4 

6E-4 
---4E 6E-4- 4E2 

sl 
E 
3E-2 3E-2 
--

E 

sO 4 
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Letting E ~ 0 for the entries in the first column we have, 

It E =0 
E~O 

It 3E-2 
E~O 

-- =-00 
E 

lt 6E-4-4E2 
E~O 

=2 
3E-2 

sO 4 

Hence the elements of pt column of Routh array are 1, 1, 0, - 00, 2 and 4. There are two sign 
changes and hence there are two roots in the right haIf of s-plane. The system therefore is unstable. 

(b) Second method : 

(i) Replace s by .!.. in D(s) and apply the Routh criterion for the resulting equation in z. z 

Considering Ex. 4.3 again and replacing s by .!.., we have, 
z 

1 1 3 3 6 
-+-+-+-+- + 4 = 0 
Z5 Z4 Z3 Z2 Z 

Rearranging the terms, 

4z5 + 60 + 3z3 + 3z2 + z + 1 = 0 

Routh array. 

z5 4 

o 6 

18-12 
--=1 

6 

3-2 
--=1 

1 

1 
--1 
_3 - =-2 

1 

3 

3 

3 

1 

There are two sign changes in the first column of the Routh array for this modified 
characteristic equatipn. Hence there are two roots in the right half of z-plane. This 
implies that there are also two roots in the right half of s-plane for the original system. 
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(ii) Second case: 

For some systems, a particular row may contain all zero entries. This happens when the 

characteristic equation contains roots which are symmetrically located about real and imaginary 

axes, namely: 

(i) one or more pairs of roots on the j m-axis 

(ii) one or more pairs of real roots with opposite signs, and 

(iii) one or more pairs of complex roots with their mirror images about the jm-axis, together 

forming quadrates in the s-plane. 

The polynomial whose coefficients are the entries in the row above the row of zeros is called an 

auxiliary polynomial and the roots of this polynomial give these symmetrically located roots. 

Since a row contains all zero entries, the Routh table cannot be constructed further. To overcome 

this, the row of zeros is replaced with the coefficients of the differential of the auxiliary equation. 

This auxiliary equation is always a polynomial with even powers of s, since the roots of this 

polynomial occur always in pairs. The procedure is illustrated with an example. 

Example 4.4 

Consider 

O(s) = S6 + S5 + 6s4 + 5s3 + 10s2 + 5s + 5 

Obtain the number of roots in the RHS of s-plane. 

Solution: 

Routh Table 

s6 6 10 5 

s5 5 5 

S4 
6-5 
-=1 5 5 

1 

x3 0 0 

The Routh table construction procedure breaks down here, since the s3 row has all zeros. The 

auxiliary polynomial coefficients are given by the s4 row. Therefore the auxiliary polynomial is, 

A(s) = S4 + 5s2 + 5 

dA(s) 
-- =4s3 + lOs 

ds 
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Replacing the s3 row in the Routh table with the coefficients of ~~s) , we have 

S6 6 10 5 

. s5 5 5 

S4 5 5 

s3 4 10 

s2 
20-10 

4 
= 2.5 5 

sl 
25-20 

2.5 
=2 

sO 5 

Examining the first column of this table we see that there are no sign changes. But since there are 
symmetrically located roots we have to find these roots for concluding about the stability. Factoring 
the auxiliary polynomial, we have the root as, 

±j 1.1756 and ±j 1.902 

These are roots on thejli}-axis and are simple. Therefore the system has no roots in the right half 
plane and the roots onjli}-axis are simple. Hence the system is limitedly stable. 

Example 4.5 

Comment on the stability of the system with the following characteristic equation. 

D(s) = s6 + s5 + 7s4 + 6s3 + 31s2 + 25s + 25 

Solution: 

Since D(s) satisfies all necessary conditions let us construct the Routh table. 

1 

o 

7 

6 

6 

o 

31 

25 

25 

25 

Since the Routh table terminates prematurely and there is a row of zeros, let us construct the 
auxiliary polynomial. 

A(s) = s4 + 6s2 + 25 

d~~S) = 4s3 + 12s 
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Continuing the Routh table 

s6 7 

S5 6 

s4 6 

s3 4 12 

s2 3 25 

Sl 
-64 
-

3 

sO 25 

31 

25 

25 

25 

141 

There are two sign changes in the first column of the Routh table and hence the system is unstable. 
Let us find the symmetrical roots present, by factoring the auxiliary polynomial A(s). 

A(s) = S4 + 6s2 + 25 

= (S2 + 5)2 + 6s2 - 10s2 

= (s2 + 5)2 - 4s2 

= (s2 + 2s + 5) (s2 - 2s + 5) 

= (s + 1 + j2) (s + 1 - j2) (s - 1 + j2) (s - 1 - j2) 

Hence we have symmetrically placed roots out of which two are in the right half of s-plane. The 
location of the roots are shown in Fig. 4.3. 

Fig. 4.3 Roots formirg a quadrate 

jro 

¥ j2 ¥ s-plane 

-11 1+1 (j 

:Ie :Ie 
j2 

If after completing the Routh table, there are no sign changes, the auxiliary polynomial will have 
roots only on the j lV-axis. They can be found out by factoring the auxiliary polynomial. The procedure 
to determine stability of a system and find the number of roots in the right half of s-plane, using 
Routh Hurwitz criterion, is summarised as follows. 

Step 1: The characteristic equation is examined for necessary conditions viz. 

(i) All the coefficients must be positive 

(ii) No coefficient of D(s) is zero between the highest and lowest powers of s. If these 
conditions are satisfied, go to step 2. 
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Step 2: Construct the Routh table. Examine the first column .of the table. If there are 'm' sign 
changes in the column, there are m roots in the right half of s-plane and hence the system 
is unstable. 

If in any row, the first entry is a zero and at least one other element is not a zero, it is not 
possible to proceed further in completing the table. Once a zero or a negative entry is 
present in the first column, it can be concluded th.at the system is unstable. If it is required 
to fmd the number of roots in the RHS of s-plane go to step 3. If all the entries in a row are 
zero, go to step 4. 

Step 3: Replace the zero by a small positive number E. Complete the table. Let E ~ 0 in all the 
elements of first column entries involving E. Find the signs of these elements. The number 
of sign changes gives the number of roots in the RHS of s-plane. 

Step 4: If all the elements of a row are zeros, it indicates that there are roots which are symmetrically 
situated in the s-plane. The location of these roots can be determined by considering the 
row above the row of zeros. An auxiliary polynomiaIA(s) is constructed with the coefficient 
as the entries in this row. It is invariably an even polynomial in s. The roots of this polynomial 
gives the symmetrically situated roots. Replace the row of zeros with the coefficients of 
the differential of the polynomial A(s). Complete the table now. 

Step 5: If there are m sign changes in the first column of the table, there are m roots in the RHS of 
s-plane and the system is unstable. There is no need to find the symmetrically situated 
roots. If there are no sign changes go to step 6. 

Step 6: Factorise the polynomial A(s). Since there are no roots in the RHS of s-plane. A(s) will 
contain roots on the jw-axis only. Find these roots. Ifthese roots are simple, the system is 
limitedly stable. If any of these roots is repeated, the system is unstable. This concludes the 
procedure. 

In many situations, the open loop system is known and even if the open loop system is stable, 
once the feedback loop is closed there is a chance for losing the stability. The forward loop invariably 
includes an amplifier whose gain can be controlled. It is therefore desirable to know the range of the 
values of this gain K for maintaining the system in stable condition. An example is considered to 
explain the procedure. 

Example 4.6 

Find the range of values of K for the closed loop system in Fig. 4.4 to remain stable. Find the 
frequency of sustained oscillations under limiting conditions. 

R(s) + K C(s) 

S(S2 + S + l)(s + 3)(s + 4) 

Fig. 4.4 A closed loop system for Ex. 4.6. 
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Solution: 

The closed loop transfer function is given by 

<:(s) CJ(s) 
T(s) = R(s) = 1 + CJ(s)H(s) 

K 
Here CJ(s) = . 

S(S2 + s + 1)(s + 3)(s + 4) , 
H(s) = 1 

N(s) K 
T(s) = -D-(s-) = -S(-S2=-+-S +-1)-(s-+-3-)(-s-+-4)-+-K-

Therefore, the characteristic equation is given by 

D(s) = S (s2 + S + 1) (s + 3) (s + 4) + K 

= s5 + 8s4 + 20s3 + 19s2 + 12s + K 

Routh table : 

s5 

s4 

s3 

s2 

1 

8 

17.625 

238.875+K 

17.625 

238.875 + K x 96 - K -17.625K 
17.625 8 

238.875 +K 

17.625 

K 

20 

19 

96-K 
--

8 

K 

Examining the first column the system will be stable if, 

(i) 

(li) 

(iii) 

238.875 + K > 0 
17.625 

(238.875+K)(96-K) -17.625 K> 0 
141 

K>O 

12 

K 

143 
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If condition (iii) is satisfied condition (i) is automatically satisfied. Let us find out for what values 
of K, condition (ii) will be satisfied. 

- K2 - 142.875 K + 22932 - 2485.125 K> 0 

or K2 + 2628 K- 22932 < 0 

(K - 8.697) (K + 2636.7) < 0 

Since K > 0, the above condition is satisfied for K < 8.697. Thus the range of values of K for 
stability is 0 < K < 8.697. 

IfK> 8.697 the entry in sl row will be negative and hence these will be two roots in the RHS of 
s-plane. The system will be unstable. If K < 8.697 the sl row entry will be positive and hence the 
system will be stable. If K = 8.697, this entry will be zero and since the only entry in this row is a 
zero, it indicates roots on the imaginary axis. s2 row will give these roots. 

(
238.875 +8.697) 

A(s) = 17.625 s2 + 8.697 

= 14.047s2 + 8.697 

The roots of this polynomial are ±j 0.7869. IfK = 8.697, the closed loop system will have a pair 
of roots at ±j 0.7869 and the response will exhibit subtained oscillations with a frequency of 0.7869 
rad/sec. 

Let us consider another example. 

Example 4.7 

Examine the stability of the characteristic polynomial for K ranging from 0 to 00. 

D(s) = s4 + 20 Ks3 + 5s2 + lOs + 15 

Solution: 

Routh Table 

s4 1 5 15 

s3 20K 10 

S2 
100K-10 

20K 
15 

100K-10 
-300K 

2K 
sl lOOK -10 

20K 

sO 15 
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The system will be stable if, 

(i) K> 0 

(ii) 

(iii) 

or 

100K-10>0 orK>O.l 
20K 

[
lOOK -10 - 600K2) 

10K-1 >0 

600 K2 - 100 K + 10 < 0 

60 K2 - 10 K + 1 < 0 

This is not satisfied for any real value of K as can be seen by factoring the expression. 

Hence for no value of K, the system is stable. 
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Let us consider an open loop system which is unstable and find the values of the amplifier gain to 
obtain closed loop stability. 

Example 4.8 

Comment on the stability of the closed loop system as the gain K is changed in Fig. 4.5. 

R(s) + K(s + 4) 1 C(S 
r--

(S2 + 5s + 6)(s -1) - s+2 

Fig. 4.5 Closed loop system for Ex. 4.8 

Solution: 

The open loop system is clearly unstable as it has a pole s = 1 in the RHS of s-plane. Let us examine 
whether it can be stabilised under closed loop operation by a suitable choice of the amplifier gain K. 

The characteristic equation is given by, 

D(s) = 1 + G(s) H(s) = 0 

K(s + 4) 
1+ =0 

(s + 2)(S2 + 5s + 8)(s -1) 

S4 + 76s3 + 11s2 + s(K - 2) + 4 (K - 4) = 0 
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Routh table : 

S4 1 11 

S3 6 (K-2) 

S2 
68-K 

6 
4(K-4) 

( 68K
6
-10}K - 2) - 24(K - 4) 

68-K 

6 

4(K- 4) 

For stability 

(i) 68 - K > 0 i.e., K < 68 

(ii) (68 - K) (K - 2) - 144 (K - 4) > 0 

(iii) 4(K - 4) > 0 or K > 4 

From condition (ii) 

or 

Finding the roots of 

_K2 + 70K- 136 - 144 K + 576 > 0 

K2 + 74K - 440 < 0 

K2 + 74K - 440 = 0 

K= -74±J742 +1760 

2 

= 5.532, - 79.532 

:. (K - 5.532) (K + 79.532) < 0 

This inequality will be satisfied for values of K. 

- 79.532 < K < 5.532 

Combining the conditions (i), (ii) and (iii) we have, for stability 

4 < K < 5.532 

Control Systems 

4(K-4) 

It can be observed that for K = 4, the constant term in the characteristic equation is zero and 
therefore there will be a pole at the origin. For K = 5.532, the elements in the sl row will all be zeros 
and hence there will be an imaginary pair of roots. To find these roots factorise the auxiliary polynomial. 

for 

A(s) = (68 ~ K) s2 + 4 (K - 4) 

K= 5.532 

A(s) = 10.411 S2 + 6.128 
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This has a pair of roots at s = ± j 0.7672. Therefore the frequency of oscillation of response for 
K = 5.532 is 0.7672 rad/sec. 

Systems which are stable, for a range of values of a parameter of the system, are said to be 
conditionally stable systems. 

4.6 Relative Stability 

By applying Routh-Hurwitz criteria, we can determine whether a system is stable or not. This is 
known as absolute stability. If there are no roots in the RHS of s-plane, we conclude that the system 
is stable. But imagine a ~ystem to have some roots with a very small negative real part i.e., the roots 
are very near to the jm-axis. jm-axis is the border for stable and unstable regions. Due to some 
environment conditions, let us assume that the parameter values have changed, which cause the roots 
nearest to thejm-axis to cross the threshold and enter unstable region. The system obviously becomes 
unstable. Hence it is necessary that the system's dominant poles (poles nearest to the jm-axis) are 
reasonably away from the jm-axis. Systems with more negative real parts of the dominant poles are 
relatively more stable than systems with less negative real parts of the dominants poles. Hence the 
distance from the jm-axis of the dominant poles is a measure of the relative stability of a system. 
We are more concerned with the relative stability of a system rather than its absolute stability. 
Routh-Hurwitz criterion gives us absolute stability of the system only. However we can modify the 
procedure to determine how far the dominant pole is from thejm-axis by shifting thejm-axis to the 
left by a small amount. Apply Routh Hurwitz criterion to find out if any roots lie on the right side of 
this shifted axis. By trial and error the negative real part of the dominant pole can be located. 

Let the dominant poles of the system be given by - oron ±jron ~. The response due to these 

poles is of the form Ae-Ocont Sin (ron ~ t +~) the time constant of the exponentially decaying 

term is given by, 

1 
T=­

oro n 

Thus we see that the time constant is inversely proportional to the real part of the pole and hence 
the setting time ts' which is approximately equal to 4T is also inversely proportional to the real part of 
the dominant pole .• For reasonably small value of the settling time, the real part of the dominant pole 
must be at a suitable distance away from the jm-axis. For the largest time constant of the system 
(real part of the dominant pole) to be greater than 't seconds, the real part of the dominant root must 

be cr = ~ units to the left of jm-axis. Thus shifting the jm-axis by cr to the left and applying 
't 

Routh-Hurwitz criterion, we can ascertain whether the largest time constant is indeed greater than •. 
To do this let s = z - cr in the characteristic equation and we get an equation in z. Applying Routh 
criterion to z-plane polynomial, we can find if any roots are lying in the right half of z-plane. If there 
are no right half of z-plane roots, it means that the system has no roots to the right of s = -(j line and 
therefore the time constant of the dominant pole is greater than • sec. 



148 Control Systems 

Example 4.9 

Determine whether the largest time constant of the system with characteristic equation given below 
is greater than 1 sec. 

D(s) = S4 + 6s3 + 14s2+ 16s + 8 

Solution: 

For the largest time constant, the dominant root must be away fromjaraxis by an amount equal to 

1 
cr=-=l 

1.0 
Shifting the jaraxis by 1.0 to the left by taking, 

s=z-l 

and substituting in D(s), we have 

D\(z) = (z - 1)4 + 6 (z - 1)3 + 14 (z - 1) + 8 

= z4 + 2z3 + 2z2 + 2z + 1 

Routh table : 

z4 1 2 1 

z3 2 2 

z2 1 1 

z\ 0 0 

Since we have a row of zeros, the polynomial in z has roots on the imaginary axis. It means that 
the dominant roots in the s-plane is having a real part equal to - 1. Therefore the largest time constant 
of the given system is equal to 1 sec. 

Example 4.10 

For what value of K in the following characteristic equation the dominant root will have a real part 
equal to - 1. 

D(s) = s3 + KS2 + 2Ks + 48 

Solution: 

Shift the imaginary axis by s = - 1 ie., put s = z - 1 

The characteristic equation becomes, 

Routh table 
z3 

z2 

z\ 

i? 

D\(z) = (z - 1)3 + K (z - 1)2 + 2K (z - 1) + 48 

= z3 + (K - 3) z2 + 3z + (47 - K) 

1 3 

K-3 47-K 

3(K - 3) - 47+ K 

K-3 
47-K 
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For the negative part of the dominant root ofO(s) to be -1, the dominant roots ofOI(z) must lie 
on the imaginary axis of z-plane. It means that in the Routh table zl entry must be zero. 

(i) 

4K-56 = 0 

56 
K= - = 14 

4 
For no other root ofOI(z) to lie on RH side of imaginary axis, the following conditions must 
also be satisfied. 

(ii) K> 3 

(iii) K < 47 

From (i), (ii) and (iii) we see that 

K= 14 satisfies the conditions (ii) and (iii) and therefore if K= 14, the dominant root ofO(s) 
will have a real part equal to - 1. 

From the examples worked out, it is clear that Routh Hurwitz criterion is suitable to determine 
absolute stability only. It is rather cumbersome to assess relative stability using Routh Hurwitz 
criterion. Frequency response methods are used to determine relative stability of systems. 
These methods will be discussed in chapter 7. 

Problems 

4.1 Find the conditions on the coefficients of the following polynomials so that all the roots are 
in the left half of the s-plane. 

(a) S2 + at s + ~ 

(b) S3 + at S2 + ~s + ~ 

(c) S4 + a1s
3 + ~S2 + a3s + a4 

4.2 For the open loop systems given below, find the poles of the unity feedback closed loop 
system. 

10 
(a) G(s) = (s+ l)(s+ 4) 

1 
(b) G(s) = (s+I)(s+3) 

9(3s + 2) 
(c) G(s) = s2(s+10) 
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4.3 For the open loop systems given below find the roots of the characteristic equation of a 
unity feedback system. 

4 
(a) G(s) = -S4 

10 
(b) G(s) = s2(s+4) 

lOs 
(c) G(s) = (s-1)(s+2) 

4.4 Find the number of roots in the right half of s-plane. Comment on the stability. 

(a) s4+8s3 + 18s2 + 16s+4 

(b) 3s4 + 10s3 + 5s2 + 5s + 1 

(c) S5 + s4 + 2s3 + 2s2 + 4s + 6 

(d) S5 + 2s4 + 6s3 + 12s2 + 8s + 16 = 0 

(e) 2s6 + 2s5 + 3s4 + 3s3 + 2S2 + S + 1 = 0 

4.5 The characteristic equations of certain control systems are give below. Determine the range 
of values of k for the system to be stable. 

(a) S3 + 4ks2 + (k+3)s + 4 = 0 

(b) S4 + 20ks3 + 5s2 + (lO+k) s + 15 = 0 

(c) S4+ ks3 + (k+4) s2 + (k+3)s + 4 = 0 

4.6 The open loop transfer function of a unity feed back control system is given by, 

K(s+ 1) 
G(s) = s2(s+4)(s+5) 

Discuss the stability of the closed loop system as a function of K. 

4.7 Determine whether the largest time constant of the system, with the following characteristic 
equation, is greater than, less than or equal to 2 seconds. 

(a) S4 + 5s3 + 8s2 + 7s + 3 

(b) S4 + 6s3 + 16s2 + 26s + 15 

(c) S4 + 7.2s3 + 16.4s2 + 28s + 15 

4.8 Determine all the roots of the characteristic equation given by, 

D (s) = S4 + 6s3 + 18s2 + 30s + 25 

It is given that the nearest root to the imaginary axis has a real part equal to -1. 

-jJ-



5 Root Locus Analysis 

5.1 Introduction 

A control system is designed in tenns of the perfonnance measures discussed in chapter 3. Therefore, 
transient response of a system plays an important role in the design of a control system. The nature 
of the transient response is detennined by the location of poles of the closed loop system. Usually the 
loop gain of the system is adjustable and the value of this gain detennines the location of poles of the 
closed loop system. It will be very infonnative if we can detennine how these poles change their 
location as the gain is increased. The locus of these roots as one parameter of the system, usually the 
gain, is varied over a wide range, is known as the root locus plot of the system. Quite often, the 
adjustment of the system gain enables the designer to place the poles at the desired locations. If this 
is not possible, a compensator or a controller has to be designed to place the closed loop poles at 
desired locations. 

The closed loop poles are the roots of the characteristic equation and hence finding closed loop 
poles amounts to finding the roots of the characteristic equation. For degree higher than 3, finding 
out the roots of the characteristic equation is tedius, more so, if one parameter is changing. 

A systematic and simple method was developed by W. R. Evans, which is extensively used by the 
control engineers, for finding the locus of the roots of the characteristic equation when one of the 
parameters changes. This method is known as Root Locus Technique. In this method, the locus of 
the roots of the characteristic equation is plotted for all values of the parameter. Usually this parameter 
is the gain of the system, but it could be any other parameter also. Once the complete locus is 
obtained, all the roots for a given value of the parameter can be detennined. We will develop the 
method assuming that the gain is the variable parameter and it can be varied from 0 to 00. 

5.2 Basic Idea 

Consider the characteristic equation of a second order system, given by 

s2 + as + K = 0 
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Let us assume that a is a constant and K is the variable. We would like to obtain the locus of the 
roots, as K is changed from 0 to 00. 

The roots of the characteristic equation are given by, 

= -a + ~a2 -4K 
sl,2 2 - 2 

Since a is a constant, when K = 0, the roots are given by 

a a 
s =--+-=O-a 

1,2 2 - 2 ' 

These are plotted on the s - plane in Fig. 5.1. 

1m s 
s-plane 

-a o Res 

Fig. 5.1 Location of the roots when K = 0 

..... (5.1) 

The two roots are real and if a is positive, one root is zero and the second root is on the negative 
real axis. As K is increased upto a value, 

a2 

K=-
4 

..... (5.2) 

the two roots are real and negative. They lie on the negative real axis and always lie between 
o and - a i.e., the roots at K = 0, move along the negative real axis as shown in Fig. 5.2, until they 

a a2 

meet at a point, - "2 for K = 4 . At this value of K, the characteristic equation will have two equal, 

real and negative roots. 

-a 

K=O 

a2 

Fig. 5.2 Locus of roots for 0 ~ K ~ 4 . 

a2 
1m s 

O<K<-

a 
2 

4 

K=O 

s-plane 

Re s 
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If K is increased further, the quantity under the radical sign becomes negative, real part remains 
the same and hence the roots become complex conjugate. As K value is increased further and 

further, the roots move on a line perpendicular to the real axis at s = - %, as shown in Fig. 5.3. 

2 
K>~ 1m s 4 

a2 
K=Q i K = 4" 

s-plane 

-a a K=Q Re s - -
2 2 

K<~ 
4 

2 
K>~ 

4 

Fig. 5.3 Locus of the roots for K > O. 

The roots are given by, 

a ~4K-a2 
sl,2=- 2" ±j 2 ..... (5.3) 

For K = 00, the two roots are complex conjugate with real part equal to - % and imaginary part 

equal to ± j 00. The plot of the locus of the roots as K is changed from 0 to 00 is known as the root 
locus plot for the characteristic equation. 

For a given value ofK, two points can be located on the root locus, which give the location on the 
root locus, which give the values of roots of the characteristic equation. For a simple second order 
system, the root locus could be plotted easily but for a characteristic equation of higher order it is not 
so straight forward. 

5.3 Development of Root Locus Technique 

Consider the closed loop system shown in Fig. 5.4. 

+ 
R(')~I---'--C(S) 

~f--~-------' 
Fig. 5.4 A closed loop system. 

The closed loop transfer function is given by 

C(s) CJ(s) 
T(s) = R(s) = 1 + CJ(s)H(s) ..... (5.4) 
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The characteristic equation is obtained by setting the denominator of right hand side of eqn. (5.4) 
to zero. Thus, 

D(s) = 1 + G(s) H(s) = 0 ..... (5.5) 

Any value of s, which satisfies eqn. (5.5) is a root of this equation. Eqn. (5.5) can also be written 
as, 

G(s) H(s) = - 1 ..... (5.6) 

Since s is a complex variable, G(s) H(s) is a complex quantity and eqn. (5.6) amounts to, 

IG(s) H(s)1 = 1 ..... (5.7) 

and /G(s) H(s) = ± 180 (2k + 1) k = 0, 1,2 ... . .... (5.8) 

The condition given by eqn. (5.7) is known as magnitude criterion and that given by eqn. (5.8) is 
known as angle criterion. Values of s - which satisfy both magnitude and angle criterion are the roots 
of the characteristic equation and hence the poles of the closed loop system. All points on the root 
locus must satisfy angle criterion and a particular point is located by applying magnitude criterion. In 
other words, the root locus is the plot of points satisfying angle criterion alone. To obtain the roots 
corresponding to particular value of the gain, we use magnitude criterion. 

The loop transfer function G(s) H(s) can usually be written involving a gain parameter K, as 

K(s + z\)(s + Z2) ... ··(s + zm) 
G(s) H(s) = ..... (5.9) 

(s + p\)(s + P2)·····(s + Pn) 

and the characteristic equation becomes, 

K(s + z\)(s + Z2)· .... (s + zm) 
1 + G(s) H(s) = 1 + = 0 

(s + p\)(s + P2)·····(s +Pn) 
..... (5.10) 

for i = 1, 2 ... m are the open loop zeros 

and for i = 1,2 ... m are the open loop poles 

of the system. To check whether a point s = s 1 satisfies angle criterion or not, we have to measure the 
angles made by open loop poles and zeros at the test point sl as shown in Fig. 5.5. Four poles and two 
zeros are taken for illustration. 

1m s 

s-plane 

Res 

-P3 

Fig. 5.5 Measurement of angles and magnitudes of the open loop poles and zeros at the test point 
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From Fig. 5.5 we can easily obtain the angle and magnitude ofG(s) H(s) for S = sl as 

IG(sl)H(sl)=~! +~2-e!-e2-e3-e4 ..... (5.11) 

and ..... (5.12) 

Note that the angles are measured in anticlockwise direction with respect to the positive direction 
of the real axis. 

If the angle given by eqn. (5.11) is equal to ± (2k + 1) 180°, the point sl is on the root locus. Value 
of K for which the point S I is a closed loop pole is d~termined by 

KAIA2 
K IG(sl) H (s)11 = = 1 ..... (5.13) 

BIB2B3B4 

BIB2B3B4 K = --'--=-....::.........!-

AIA2 
or ..... (5.14) 

5.4 Properties of Root Locus 

If a root locus plot is to be drawn, a test point must be selected and checked for angle criterion. 
It becomes difficult to check all the infinite points in the s-plane for locating the points on the 
root locus. 

If an approximate root locus can be sketched, it will save lot of effort to locate the points. Further, 
a rough sketch also helps the designer to visualize the effects of changing the gain parameter K or 
effect of introducing a zero or pole on the closed loop pole locations. Now software tools like 
MATLAB are available for plotting the root locus exactly. 

To draw a rough sketch of the root locus, we study certain properties of the root locus plot. 

Property 1 

The root locus is symmetrical about the real axis. 

The roots of the closed loop system are either real or complex. If they are complex, they must 
occur in conjugate pairs, i.e., if 0"1 + jro! is a root 0"1 - jro l must also be a root. Therefore the roots are 
either on the real axis or they lie symmetrically about the real axis. 

Property 2 

The closed loop poles are same as open loop poles at K = o. Similarly closed loop poles will be same 
as open loop zeros or they occur at infinity when K = 00. 

Proof 

The characteristic equation is given by. 

K(s + ZI)(S + z2) ... ··(s + zm) 
1+ =0 

(s + PI)(S + P2)·····(s + Pn) 

n m 

or 7t (s + p) + K 7t (s + z) = 0 
1=1 1 J=1 J 

..... (5.15) 
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If K = 0 in eqn. (5.15), we have 

n 

1t (s + Pi) = 0 
1=1 

..... (5.16) 

This is the characteristic equation if K = O. Thus at K = 0, the open loop poles at s = - Pi are the 
same as closed loop poles. 

Dividing eqn. (5.15) by K, we have, 

1 n m 
-.1t (s+p.)+ 1t (s+z)=O 
K 1=1 1 j=1 J 

..... (5.17) 

If K = 00 in eqn. (5.17), this equation yields, 

m 

1t (s + z) = 0 
j=1 J 

..... (5.18) 

i.e., the closed loop poles are same as the open loop zeros and occur at s = -Zj when K ~ 00. 

Thus, we see that, as K changes from zero to infinity, n - branches of the root locus start at the 
n open loop poles. m of these branches terminate on m - open loop zeros for K = 00. If m < n, the 

remaining n - m branches go to infinity as K ~ 00 as shown below. 

The characteristic eqn. (5.15) can be written as, 

m 

1t(s+Zj) 
j=1 "----- = 
n 

.1t(s + pJ 
1=1 

K 

1 
~(1+~ ) j=1 S 

sn-m ~(l+El ) 
1=1 S 

1 

K 

1 
=--

K 

Let s ~ 00 and K ~ 00, then eqn. (5.20) yields 

It 
5 ..... 00 

1 
= It -- = 0 

K ..... oo K 

..... (5.19) 

..... (5.20) 

..... (5.21) 
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Thus we see that (n - m) points at infinity satisfy the condition given by eqn. (5.21) and therefore 
they are the roots of the characteristic equation at K = 00. 

Thus we see that n branches of the root locus start at open loop poles for K = 0 and m of these 
locii reach m open loop zeros as K ~ 00 and the remaining n - m branches go to infinity. The next 
property helps us to locate these roots at infinity. 

Property 3 

The (n - m) roots of the characteristic equation go to infinity as K ~ 00 along asymptotes 
making angles, 

(2k + 1)180° 
<p = ~-----'--

n-m 
k = 0, 1,2, ... (n - m - 1) ..... (5.22) 

Proof 

Consider a point on the root locus at infinity. Since the poles and zeros of the open loop system 
are at finite points, for a point at infinity, all these poles and zeros appear to be at the same point. 
The angle made by the point at infinity at all these poles and zeros will essentially be the same and let 
it be equal to <p. Since there are n poles and m zeros in G(s) H(s), the net angle of G(s) H(s) at the 
point is, 

jG(s) H(s) = - (n - m) <p 

Since the point is on the root locus, we have 

- (n - m) <p = ± (2k + 1) 1800 

or <p = ± (2k + 1)180° 
n-m 

As there are (n - m) branches going to infinity, k can take on values 0, 1,2 ... upto (n - m - 1). 
Thus, 

(2k + 1)180° 
<p = ± ~----''--­

n-m 
for k = O. 1, 2, ... (n - m - 1) 

Thus the closed loop poles at infinity lie on asymptotic lines making angles given by eqn. (5.22) at 
a point on the real axis. (For a point at infmity, the open loop poles and zeros appear to be at a single 
point on the real axis, since the open loop poles and zeros are fmite and are symmetrically located 
with respect to the real axis) 

Property 4 

The (n - m) asymptoes, along which the root locus branches go to infinity, appear to emanate from 
a point on the real axis, called centroid, given by 

cr = a 

~ real parts of poles - ~ real parts of zeros 

n-m 
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Proof 

Consider the loop transfer function 

m 

K.7t(s+z) N () 
G(s) H(s) = ~=1 = _1 S_ 

7t(S+pJ D1(s) 
1=1 

..... (5.23) 

The NI(s) is of power m and DI(s) is of power n. From the properties of the roots of polynomials, 
we have, 

m 

Coefficient ofsm
-

I in NI(s) = I ~ 
j=1 

n 

and coefficient ofsn
-

I in 0 1(5) = I Pi 
i=1 

Thus eqn. (5.23) can be written as 

m 
m ~ m-l S +~zJs + ..... 

j=1 
G(s) H(s) = K. ---"-----

n m n-l 
S + L PiS + ..... 

1=1 

Dividing DI(s) by NI(s) in eqn. (5.24), we have 

K 
G(s) H(s) = --....,---------,-----

sn-m +(i pi _ .~Zj)sn-m-l + ..... 
1=1 J=1 

As s ~ 00, the significant terms in G(s) H(s) are given by 

It G(s) H(s) ___ ...,--_K_--c-__ 

s .... OO - sn-m + (.i PI _ ~ z )sn-m-l 
1=1 J=1 J 

Let us consider an open loop transfer function 

..... (5.24) 

..... (5.25) 

..... (5.26) 

Since this has (n - m) repeated open loop poles at s = - O"a and no zeros, (n - m) branches of the 
root locus must start from open loop poles at s = - O"a and go to infinity. Let So be a point on one of the 
branches of the root locus of G1(s) H(s). Let it make an angle ~ at s = - O"a as shown in Fig. 5.6. 
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From angle criterion. 
1m s 

--~~~-----r----------Res 

K 
Fig. 5.6 A point on the root locus of n-m 

(s+(ja) 

G I (so) HI (so) = - (n - m) ~ = ± (2k + 1) 1800 

or 
2k+l 0 

~=± -- 180; 
n-m 

k = 0, 1, 2, ... n - m - 1 ..... (5.27) 

Thus all points lying on straight lines making angles given by eqn. (5.27) are on the root locus. 
Thus the root locus of 1 + GI (s) HI (s) = 0 is a set of straight lines starting at s = - (ja and going to 
infinity along lines making angles given by eqn. (5.27). For n - m = 4, the root locus of 1 + GI(s) HI (s) 
is shown in Fig. 5.7. 

1m s 

Re s 

K 
Fig. 5.7 Root locus of 4 

(s+(ja) 

But GI(s) HI(s) can also be written as, 

..... (5.28) 

and as s ~ 00 

If (1~1 PI - J~1 ZJ) in eqn. (5.26) and (n - m) (ja in eqn. (5.28) are equal, both G(s) H(s) and GI(s) 

HI(s) behave in the same way as s ~ 00. The root locus of 1 + GI(s) HI(s), which is a set of straight 
lines making angles give by eqn. (5.27) at s = - (ja' will form asymptoes to the root locus branches of 
the characteristic equation 1 + G(s) H(s). Thus the asymptotes intersect at a point on the root locus 
given by, 

n m 

(n - m) (j = l: PI - l: ZJ 
a 1=1 J=1 
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or cr = a 

Control Systems 

n m 
I PI - I Z 
i=1 J=1 J 

n-m 
..... (5.29) 

Since the poles and zeros occur as conjugate pair, the imaginary parts cancel each other when 
summed, and hence eqn. (5.29) can also be written as 

Property 5 

cr = a 

I real parts of poles - I real parts of zeros 

n-m 

A point on the real axis lies on the root locus if the number ofreal poles and zeros to the right of this 
point is odd. This property demarcates the real axis into segments which form a part of root locus 
and which do not form a part of root locus. 

Proof 

Consider the poles and zeros of an open loop transfer function G(s) H(s) as shown in Fig. 5.8. 

Re s 

Fig. 5.8 Angles subtended by poles and zeros at a test point Sl 

Consider any point S = sl on the real axis as shown in Fig. 5.8. To see whether this point is on root 
locus or not, we have to find out the total angle at this point due to all the poles and zeros at this point. 
Draw vectors from all the poles and zeros to this point. It is easy to verify that the complex poles or 
zeros subtend equal and opposite angles at any point on the real axis. So <Pp3 = - <Pp4 ; <Pz2 = - <Pz3' 

Hence the net angle contributed by the complex poles and zeros at any point on the real axis is zero. 
Coming to the real poles and zeros, each pole and zero to the right of the point s = S I substends an 
angle equal to 180°. In the figure <Ppl' <Pp2 and <PzI are each equal to 180°. Each pole and zero to the left 
of the point S I subtends an angle of zero at s = s \. Hence these poles and zeros to the left of the point 
can be disregarded. The point s = s \ on the real axis will be a point on the root locus if the total angle 
<P of G(s) H(s) at s = s\' 

<P = ± (2k + 1) 180° 

Le., if it is an odd multiple of 180°. Since each pole and zero to the right of s ~ s\ contributes - 180° 
and + 180° respectively, the point s = s \ satisfies angle criterion, if the total number of poles and zeros 
to the right of the point is odd. 
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For the given example, the root locus on real axis is as shown in Fig. 5.9. 

1m s 
x 

Re s 

x 
Fig. 5.9 Root locus branches on real axis. 

Property 6 

Two root locus branches starting from two open loop poles on real axis for K = 0, meet at a point on 
the real axis for some particular value ofK = K I . At this value ofK, the two closed loop poles will be 
equal. Such points on root locus where multiple closed loop poles occur, are known as breakaway 
points. The root locus branches meet at this point and for values of K > K I , the closed loop poles 
become complex. Complex repeated roots may also occur in a closed loop system and hence the 
breakaway points can be real or complex. A real breakaway point and a complex break away point 
are shown in Fig. 5.10. 

In Fig. 5.10, the position of real axis between the two poles, is a part of the root locus since the 
number of poles and zeros to the left of any point on this portion, is odd. Both the root locus 
branches start from the pole and go along the arrows indicated. They meet at a point Sl on the real 
axis at K = K I . This point represents a double pole of the closed loop system. If K is increased 
further, the root locus branches break away from the real axis at S = sl as shown in Fig. 5.10. 

1m s 
complex breakaway point 

real breakaway point 

Res 

Fig. 5.10 Real and s complex breakaway point. 

Similarly, a set of complex root locus branches may join at a point on the real axis for some K = K2 
and ifK > K2, they approach open loop zeros lying on the real axis at K = 00, as shown in Fig. 5.11. 
The point s2 is a double pole of the closed loop system for K = K2. 

1m s 
Break in 

breakaway point 

to zero at infinity 
Res 

Fig. 5.11 Breakin point on the root locus. 
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For K > K2 one root locus branch approaches the zero on the right and ~e other branch goes to 
zero at infinity. The point where multiple roots occur is such cases, is known as a breakin point. The 
complex root locus branches break into real axis at s = s2 and there after remain on real axis. 

To determine these breakaway or breakin points let us consider the characteristic equation. 

D(s) = 1 + G(s) H(s) = 0 

Let this characteristics equation have a repeated root of order r at s = sl. Hence D(s) can be 
written as 

D(s) = (s - sl)r D1(s) 

Differentiating eqn. (5.30), we have 

dD(s) dDl (s) 
ds = r (s - slt- 1 D1(s) + (s - sit ds 

Since eqn. (5.31) is zero for s = sl 

dD(s) 
~=o 

..... (5.30) 

..... (5.31) 

..... (5.32) 

Hence, the breakaway points are these points which satisfy dD(s) = o. This is only a necessary 
ds 

condition but not sufficient. Hence a root of dD(s) is a breakaway point but not all roots of dD(s) 
~ ~ 

are breakaway points. Out of the roots of d D (s) those which also satisfy the angle criterion, are the 
ds 

breakaway or breakin points. 

Let us reconsider eqn. (5.32). Since 

D(s) = 1 + G(s) H(s) 

dD(s) d 
-- = - [G(s) H(s)] = 0 

ds ds 
for a breakaway point. Further, if 

In other words, 

Since 

G(s)H(s)=K. Nl(S) 
Dl(S) 

d[G(s)H(s)] 
ds =K. 

Dl(S)~-N\(S)~ 
[D\ (s»)2 

D
1
(s) dN\(s) _ N

1
(s). d~l(S) = 0 

ds s 

1 + G(s) H(s) = 0 

..... (5.33) 

=0 

..... (5.34) 
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We have 

or 

l+K NI (s) =0· 
DI(s) 

K=_DI(s) 
NI(s) 

Considering K as a function of sin eqn. (5.35), if we differentiate K (s) 

-[NI(S) dDI(s) _ DI dNI(S)] 
dK ds ds 
=~~--~~~~-----= 

ds [NI(s)P 

Comparing eqn. (5.34) and (5.36) we have 

dK 
d; =0 

dK 
Hence breakaway points are the roots of ds which satisfy the angle criterion. 

In order to find out breakaway or breakin points, the procedure is as follows : 

(i) Express K as 

DI(s) NI(s) 
K = - NI(s) where G (s) H (s) = DI(s) 

( .. ) F· d dK 0 11 In - = 
ds 

(iii) Find the points which satisfy the equation in step (ii). 
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..... (5.35) 

..... (5.36) 

(iv) Out of the points so found, points which satisfy the angle criterion are the required breakaway 
or breakin points. 

Real axis breakaway or breakin points can be found out easily since we know approximately 
where they lie. By trial and error we can find these points. The root locus branches must approach 

or leave the breakin or breakaway point on real axis at an angle of ± 180 , where r is the number of 
r 

root locus branches approaching or leaving the point. This can be easily shown to be true by taking 

a point close to the breakaway point and at an angle of 180 . This point can be shown to satisfy angle 
r 

criterion. 

An example will illustrate the above properties of the root locus. 

Example 5.1 

Sketch the root locus of a unity feedback system with 

G(s) = K(s + 2) 
s(s + l)(s + 4) 
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Solution: 

Step 1 

Mark the open loop poles and zeros in s - plane as shown in Fig. 5.12 (a). 

K=Q K=oo 

--4 -2 

Fig. 5.12 (a) Poles and zeros of G(s). 

Step 2 

-1 
K=Q 

Ims 

Q 
K=Q 

Re s 

Control Systems 

The number of root locus branches is equal to the number of open loop poles. Thus there are 3 root 
locus branches starting from s = 0, s = -1 and s = -4 for K = o. Since there is only one open loop 
zero, one of the root locus branches approaches this zero for K = 00. The other two branches go to 
zero at infinity along asymptotic lines. 

Step 3 

Angles made by asymptotes. 

2k+l 
<l>a = -- 180 k = 0, 1,2, ... (n - m - 1) 

n-m 

Since n = 3 and m = 1, there are n - m = 2 asymptotes along which the root locus branches go to 
infinity 

Step 4 

Centroid 

180 
<1>1 = 2" = 90° k = 0 

3x180 
<1>2 = -2- = 270 k = 1 

(J = a 

LR. P of poles - LR. P of zeros 

n-m 

3 0-1- 4- (-2) 

2 
=- -

2 

Draw the asymptotes making angles 90° and 270° at (Ja = - % on the real axis as shown in 

Fig. 5.12 (b). 
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assympotes 1m s 

-4 -2 \-1 
2700 

O'a =-1.5 
.- assympotes 

Fig. 5.12 (b) Asymptotes at O'a = -1.5 making angles 900 and 2700 

StepS 

Root locus on real axis : 

Res 

Using the property 5 of root locus, the root locus segments are marked on real axis as shown in 
Fig 5.12 (c). 

Ims 

root locus root 

K=O ~ K=oo K=O 
~IOCUS 

-4 -2 1.5 -1" K=O Res 

Fig. 5.12 (c) Real axis root locus branches of the system in Ex. 5.1 

Step 6 

There is one breakaway point between s = 0 and s = -1, since there are two branches of root locus 
approaching each other as K is increased. These two branches meet at one point s = sl for K = KI and 
for K > KI they breakaway from the real axis and approach infinity along the asymptotes. 

To find the breakaway point, 

G H s _ K(s+2) 
(s) () - s(s + l)(s + 4) 

s(s + l)(s + 4) 
K = - ---"---s-'-+"":""2--'-

= 
(s + 2)[3s2 + 10s+ 4]-s(s + 1)(s +4).1 
-'--.:....=...-----=--=--'--..:....:...---'-- = 0 

(s+2/ 

dK 

ds 

or 2s3 + 11 S2 + 20s + 8 = 0 
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Out of the three roots of this equation, one which lies between 0 and -1 is the breakaway point. 
By trial and error, we can find the breakaway point to be s = - 0.55. 

Since the root locus branches should go to infmity along the asymptotes, a rough sketch of root 
locus is as shown in Fig. 5 .12 (d). 

Ims 

K=O K=oo -0.55 

-2 -1.5 -1 K=O Re s 

Fig. 5.12 (d) Complete root locus sketch for Ex. 5.1. 

Property 7 

The root locus branches emanating at complex open loop poles do so at an angle, called angle of 
departure from a complex pole. To determine this angle let us consider a system with pole zero plot 
given in Fig. 5.13. .. 

'tIp3 

4lp2 

P2 

4lpJ 

Fig. 5.13 Angle of departure of the root locus from a complex pole. 

Consider a point, sl on the root locus very close to the complex pole. At this point angle criterion 
must be satisfied. 

I G(sl) H(SI) = (<I>zl + <l>z2) - (<I>pl + <l>p2 + <l>p3 + <l>p4) 

= (2k + 1) 1800 ..... (5.38) 

If the point s 1 is very close to the complex pole, angle of departure of the root locus branch can be 
taken to be equal to <l>p3' 

Let the angle of departure be <l>p. 

<l>p = <l>p3 
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:. From eqn. (5.38) 

(~zl + ~z2 - ~PI - ~p2 - ~p4) - ~p = ± (2k + 1) 180
0 ..... (5.39) 

The fIrst term in parenthesis on the left hand side of eqn. (5.39) is the net angle contributed by all 
other poles and zeros at sl or the complex pole P3 (since sl is very close to P3)' Denoting this net angle 
by~, we have 

or 

~ - ~p = ± (2k + 1) 1800 

~p = ~ ± (2k + 1) 1800 

k = 0, 1, 2 .. . 

k = 0, 1, 2 .. . ..... (5.40) 

At a complex zero, root locus branches approach at an angle called angle of arrival. Angle of 
arrival at a complex zero can be shown to be equal to 

~z = ± (2k + 1) 180 - ~ k = 0,1,2 ... ..... (5.41) 

Where ~ is the net angle contributed by all other poles and zeros at that complex zero. 

Property 8 

If a root locus branch crosses the imaginary axis, the cross over point can be obtained by using 
Routh - Hurwitz criterion. 

As discussed in chapter 4, Routh Hurwitz criterion can be applied to the characteristic equation 
and the value of K for which a row of zeros is obtained in the Routh array can be determined. 
Whenever a row of zeros is obtained in Routh's array, it indicates roots on imaginary axis. These 
roots can be determined by solving the auxiliary equation. 

Using these eight properties, a rough sketch of the root locus of a system can be plotted. These 
properties or rules are summerised in Table. 5.1. 

Table 5.1 Properties of root locus 

1. The root locus is symmetrical about the real axis 

2. There are n root locus branches each starting from an open loop pole for K = 0. m of these 
branches terminate on m open loop zeros. The remaining n - m branches go to zero at infInity. 

3. The n - m branches going to zeros at infInity, do so along asymptotes making angles 

(2k ± 1)180 
,f,= k=O, 1,2 .... (n-m-l) 
'I' n-m 

with the real axis. 

Note: For different values of (n - m) the angles of asymptotes are fIxed. For example if 

(i) n - m = 1 ~ = 1800 

(ii) n - m = 2 ~ = 90, - 90 

(iii) n - m = 3 

(iv) n - m = 4 

~=60, 180,-60 

~ = 45, 135, - 135, - 45 and so on. 

4. The asymptotes meet the real axis at 

(j = a 

:E real parts of poles - :E real parts of zeros 

n-m 

Table. 5.1 Contd. .... 
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5. Segments of real axis are parts of root locus if the total number of real poles and zeros 
together to their right is odd. 

6. Breakaway or Breakin points. 

These are points in s-plane where multiple closed loop poles occur. These are the roots of 
the equation, 

dK =0 
ds 

Only those roots which satisfy the angle criterion also, are the breakaway or breakin points. 
If r root locus branches break away at a point on real axis, the breakaway directions are 

1800 

given by ± --. 
r 

7. The angle of departure of the root locus at a complex pole is given by, 

~p = ± (2k + 1) 180 + ~ 
where ~ is the net angle contributed by all other open loop zeros and poles at this pole. 

Similarly the angle of arrival at a complex zero is given by 

~z = ± (2k + 1) 180 - ~ 

where ~ is the net angle contributed by all other open loop poles and zeros at this zero. 

8. The cross over point of the root locus on the imaginary axis is obtained by using Routh 
Hurwitz criterion. 

After drawing the root locus for a given system, if the value of K is desired at any given point 
S = S I on the root locus, magnitude criterion can be used. We know that, 

or 

IG(s) H(s)1 = 1 at s = Sl 

m 

1t(s+Zj) 
K j=1 

n 

1t(s+pJ 
i=1 

n 

= 1 at s = Sl 

1t lSI + Pil 
K= -,-,I=:!...I __ _ 

m 

,1t lSI + Zjl 
J=I 

..... (5.42) 

This can be evaluated graphically. 

lSI + Pil is the length of the vector drawn fromp! to sl and lSI + zJI is the length of the vector drawn 
from zJ to sl' 

K = Product of lengths of vectors drawn from open loop poles to Sl 

Product of length of vectors drawn from open loop zeros to Sl 

Let us now consider some examples to illustrates the method of sketching a root locus. 
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Example 5.2 

Sketch the root locus of the system with loop transfer function 

K 
G( s) H( s) = -s(-s +-2)-( S72 -+-s +-1-) 

Step 1 

Plot the poles and zeros of G(s) H(s) 

Zeros: nil 

Poles: 0, - 2, - 0.5 ± j ~ 
Step 2 

169 

There are 4 root locus branches. Since there are no zeros all these branches 'go to infinity along 
asymptotes. 

Step 3 

Angles of asymptotes 

Step 4 

Centroid' 

(2k + 1)180 
~= n-m 

180 
"" = - =450 
'1'1 4-0 

180 0 
~3 = 5. 4 _ 0 = 225 

k = 0, 1,2,3 

~ real parts of poles - ~ real parts of zeros 
O'a = 

n-m 

0-2-0.5 -0.5 3 
=--

4 4 
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Step 5 

Root locus on real axis. 

Root locus lies between 0 and - 2. 

A sketch of the root locus upto this point is given in Fig. 5.14 (a) 

1m s 

K=O 

-2 

Fig. 5.14 (a) Partial root locus 

Step 6 

Breakaway points 

K=O J3 
x 

x 
K=O 

K=O 

Control Systems 

Res 

There is one breakaway point lying between 0 and 2. Its location can be obtained by using, 

dK 
-=0 
ds 

K = - s (s + 2) (s2 + S + 1) 

= - S4 _ 3s3 - 3s2 - 2s 

dK 
- = - 4s3 - 9s2 - 6s - 2 = 0 
ds 

4s3 + 9s2 + 6s + 2 = 0 

Solving this for a root in the range 0 to 2 by trial and error we get the breakaway point as, 

s = - 1.455 

Step 7 

Angle of departure from complex poles 

s = - 0.5 +J' .J3 - 2 

.J3 
Draw vectors from all other poles and zeros to complex pole s = - 0.5 ± j as shown in 

2 
Fig. 5.14 (b). 
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Ims 

-2 o 

Fig. 5.14 (b) Calculation of angle of departure from s = - 0.5 .! j ~ 
The net angle at the complex pole due to all other poles and zeros is 

~ = - ~1 - ~2 - ~3 

Re s 

[
180 -1 J3] -1 J3 =- -tan --1 -90-tan --

2x- 2x 1.5 

Angle of departure 

Step 8 

Crossing of jro-axis 

2 
= - 120 - 90 - 30 = - 240 

~p = ± (2k + 1) 180 + ~ 
= 180 - 240 

=-60 

The characteristic equation is, 

1 + G(s) H(s) = 0 

1 + K = 0 
s(s + 2)(S2 + s + 1) 

S4 + 3s3 + 3s2 + 2s + K = 0 

Constructing the Routh Table: 
S4 3 
s3 3 2 

s2 
7 
- K 
3 

SI 
14/3 -3K 

7/3 
sO K 

k = 0, 1,2 

K 
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S 1 row becomes zero for 

14 14 
3K= 3 orK= 9 

Auxiliary equation for this value ofK is, 

7 14 
- s2 + - = 0 
3 9 

2 
s2=_ -

3 

s=±j H =±j 0.8165 

14 
The root locus crosses jro-axis at s = ±j 0.8165 for K = 9 

Control Systems 

From these steps the complete root locus is sketched as shown in Fig. 5.14 (c) 

-2 

j 0.8165 

_j'J3 -1' 
K 

Fig. 5.14 (c) Complete root locus sketch for G(s) H(s) = 2 
s(s + 2)(s + s + 1) 

Example 5.3 

Sketch the root locus of the following unity feedback system with 

K 
G(s) = s(s + 2)(S2 + 2s + 4) 

(a) Find the value ofK at breakaway points 

(b) Find the value ofK and the closed loop poles at which the damping factor is 0.6. 
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Solution: 

Step 1 

Plot the poles and zeros 

Zeros: nil 

Poles : 0, - 2, - 1 ± j .J3 
Step] 

There are 4 root locus branches starting from the open loop poles. All these branches go to zeros at 
infInity. 

Step 3 

Angles of asymptotes. 

Since 

Step 4 

Centroid 

Step 5 

n- m = 4, 

cp = 45, 135,225, and 315° 

(J = a 

0-2-1-1 

4 
=-1 

The root locus branch on real axis lies between 0 and - 2 only. 

Step 6 

Breakaway points 

dK 
-=0 
ds 

K = - s (s + 2) (S2 + 2s + 4) 

= (S4 + 4s3 + 8s2 + 8s) 

dK 
- = 4s3 + 12s2 + 16s + 8 = 0 
ds 

It is easy to see that (s + 1) is a root of this equation as the sum of the coefficients of odd powers 
of s is equal to the sum of the even powers of s. The other two roots can be obtained easily as. 

s=-I':tjl 

dK 
So the roots of ds are s = - 1, - 1 ± j 1. 

c-- s = - 1 is a point on the root locus lying on the real axis and hence it is a breakaway point. We have 
to test whether the points - 1 ± j 1 lie on the root locus or not. 

fi K 
G(s) H(s)ls = -I + jl = angle of (-1 + jl)( -1 + jl + 2)[(-1 + jl)2 + 2(-1 + jl) + 4] 

/G(s) H(s)ls=_1 +jl = (- 135 - 45 - 0) 

= - 180°. 
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Thus angle criterion is satisfied. Therefore s = - 1 ± j r will-be points on the root locus. All the 

elK 
roots of ds = 0 are thus the breakaway points. 

dK 
This is an example where all the roots of ds = 0 are breakaway points and some breakaway 

points may be complex. 

Step 7 

Angles-of departure 

ell! 

-2 -1 

eIl2 

Fig. 5.15 (a) Angle of departure from complex poles. 

The net angle at the complex pole s = - 1 + j .J3 due to all other poles is 

cp = - eII l - e112 - e113 

= - 120 - 90 - 60 

= 270° 

:. eIIp = 180 - 270° = - 90° 

Since there ate two branches on the real axis and they breakaway from re::-.l axis at s = - 1 at an 

180 
angle 2 = 90°, and the angles of departure from complex poles are also - 90 and + 90, the two root 

locus branches meet at - 1 + jl and break away from these as shown in Fig. 5.15 (b). 
K=O i.J,/ 

jfi 
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Step 8 

Crossing of jro-axis. 

The characteristic equation is 

S4 + 453 + 852 + 85 + K = 0 

Applying Routh's criterion, 

4 

6 

48-4K 

6 

sO K 

Making 51 row equal to zero, we have 

48 -4K= 0 

K= 12 

With K = 12 in s2 row, the auxiliary equation is 

652 + 12 = (' 

s=±j .fi 

8 

8 

K 

The root locus branches cross the jro-axis at ± j .fi 

The complete root locus is sketched in Fig. 5.15 (b) 

175 

K 

(a) Let us fmd the value ofK at which complex conjugate poles are repeated Le., at s = -1 + jl. 

K = - 5 (5 + 2) (s2 + 2s + 4)s = -1 + Jl 

= - (- 1 + j 1)(- 1 + j 1 + 2) {( - 1 + j 1)2 + 2 (- 1 + j 1) + 4} 

=4 

The characteristic equation for this value of K i5 

• (5 + 1 + j 1 i (s + 1 - j 1)2 = 0 

(52 + 2s + 2)2 = 0 

At the real breakaway point s = - 1 

K = - 5 (s + 2) (52 + 2s + 4)s =-1 

=1(1)(1-2+4) 

=3 

(b) Recalling the fact that a complex pole can be written as 

- oron + jron ~1- 02 
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the angle made by the vector drawn for origin to this pole is Cos-1 8, with the negative real axis 
as shown in Fig. 5.16. 

1m s 

ron~ 
o 
~ 

I COS-l I) 

-&on 

Fig. 5.16 Angle made by the vector from origin to a complex pole. 

Res 

Let us find the value of K for which the damping factor of the closed loop system is 0.6 in 
example 5.3. Since Cos-1 0.6 = 53.13°. 

Let us draw a line making 53.13° with negative real axis as shown in Fig. 5.17. 

Fig. 5.17 Root locus of Ex. 5.3. 

This line cuts the root locus at two points A and C. Let us find the value ofK and the closed loop 
poles at the point A. 

The point A is obtained as, 

AB = OB tan 53.13° 

= 1.333 

The two complex roots of the closed loop system are, 

s = - 1 ±j 1.333 

At this point, the value of K can be obtained as discussed earlier using eqn. (5.42). 
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4 

K = 1~1 I(SI + pJI 

= 1(-1 + j1.333)( -1 + j1.333 + 2)(-1 + j1.333 + 1 + j.J3)( -1 + j1.333 + 1 - j.J3) I 
= 1.666 x 1.666 x 3.06 x 0.399 

= 3.39 

At this value of K, the other two closed loop poles can be found from the characteristic equation. 

The characteristic equation is 

s4 + 4s3 + 8s2 + 8s + 3.39 = 0 

The two complex poles are s = - 1 ±j 1.333 

.. The factor containing these poles i~ 

[(s + 1)2 + 1.777] 

s2 + 2s + 2.777 

Dividing the characteristic equation by this factor, we get the other factor due to the other two 
poles. The factor is 

s2 + 2s + 1.223 

The roots of this factor are 

s=-l ±j 0.472 

The closed loop poles with the required damping factor of 8 = 0.6, are obtained with K = 3.39. At 
this value of K, the closed loop poles are, 

s = - 1 ±j 1.333, - 1 ±j 0.472 

Note: The Examples 5.2 and 5.3 have the same real poles at s = 0 and s = - 2. The complex poles are 
different. If the real part of complex poles is midway between the real poles, the root locus will have 
one breakaway point on real axis and two complex breakaway points. If real part is not midway 
between the real roots there is only one breakaway point. In addition, if the real part of the complex 
roots is equal to the imaginary part, the root locus will be as shown in Fig. 5.18. 

K 
Fig. 5.18 Root locus of G(s) H(s) = 2 

s(s + 2)(s + 2s + 2) 
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The breakaway point is s = - 1 and it is a multiple breakaway point. The angles of departure from 
the complex poles is - 90° and + 90°. Centroid is (ja = -1. Hence four branches of root locus meet 

180 
at s = - 1 and break away at angles given by 4 = 45° along asymptotes. The asymptotes themselves 

are root locus branches after the breakaway point. For K > 1, all the roots are complex. In this case, 
the exact root locus is obtained and it is easy to locate roots for given K or K for a given dampling 
factor etc. 

Example 5.4 

Obtain the root locus of a unity feed back system with 

K(s + 4) 
G (s) = S2 + 2s + 2 

Solution: 

Step 1 

The poles and zeros are plotted on s-plane 

Zeros: s = - 4 

Poles: s = - 1 ±j 1 

Step 2 

There are two root locus branches starting at - 1 + j 1 and one branch tenninating on the finite zero 
s = - 4 and the other on zero at infinity. 

Step 3 

Angle of asymptotes 

Since n - m = 1 

Step 4 

Centroid 

Step 5 

(j = a 

-1-1+4 
1 

=2 

Root locus branches on real axis. 

Since there is only one zero on the real axis, the entire real axis to the left of this zero is a part of 
the root locus. 

Step 6 

Breakin point 

S2 +2s+2 
K=----­

s+4 
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dK (s+4)(2s+2)-(S2 +2s+2) 
= =0 

ds (s + 4)2 

The roots of S2 + Ss + 6 = 0 are, 

-S±.J64-24 
SI,2 = 2 

= - 0.S37, -7.162 

Since Sl = - 0.S37 is not a point on the root locus, s = -7.162 is the breakin point. 

Step 7 

Angle of departure 

-I + jl 

-4 

-I-jl 

Fig. 5.19 (a) Calculation of angle of departure 

1m s 

Angle contribution at - 1 + j 1 by other poles and zeros 

1 
~ = - 90 + tan-I "3 

= - 71.56° 

The angle of departure from (- 1 + j 1) 

~p = ISO - 71.56 

= 10S,43° 

Res 
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From Fig. 5.19 (b) it can be seen that the root locus never crosses jro-axis. The complete root 
locus is given in Fig. 5 .19 (b). 

K=oo 

-4 

K(s+4) 
Fig. 5.19 (b) Root locus sketch for G(s) H(s) = -c2=--'---'­

S +2s+2 

Ims 

Res 

K=Q 
-1 -=-jl 
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Example 5.5 

Sketch the root locus for 

Solution: 

Step 1 

Open loop 

Step 2 

K(S2 +2s+2) 
G(s) H(s) = s2(s+4) 

zeros: -1 ±jl 

Poles : s = 0, 0, - 4 

Control Systems 

There are three root locus branches. Two of them approach the zeros at 1 + j 1. The third goes to 
infinity along the assymptote with an angle 1800

• 

Step 3 

-4+1+1 
(j = =-2 

a 1 

Step 4 

Root locus on real axis lies between - 00 and - 4. 

Step 5 

Breakaway point. 

Since s = ° is a multiple root, the root locii break away at s = 0. 

Step 6 

Angle of arrival at complex zero 1 ± j 1. 

-1 + jl 

-4 

Fig. 5.20 (a) Angle of arrival at complex zero 

~1=~2 

Total angle contribution by all other poles and zeros at s = 1 ± j 1. 

1 
<II = - 2 (180 - tan-II) + 90 - tan-1 -

3 
= - 198.43° 
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Angle of arrival at zero at -1 ±j 1 is 

<l>z = 180 - (- 198.43) 

= 18.43° . 

Step 7 

jro-axis crossing 

The characteristic equation is 

s3 + s2 (K + 4) + 2Ks + 2K = 0 

Routh Table 
s3 

s2 K+4 

2K2 +8K-2K 

K+4 
2K 

S I row will be zero if, 

or 

2K2 + 6K= 0 

K=O, K=-3 

2K 

2K 

o 

Since K = - 3 is not valid, the crossing of jro-axis is for K = 0 i.e., at s = O. 

The complete root locus plot is given in Fig. 5.20 (b). 

K=O 

-4 

K(S2 +2s+2) 
Fig. 5.20 (b) Complete root locus of ----'--2-----'­

s (s + 4) 
Example 5.6 

-1- jl 

1m s 
""""'...--1-18.430 

K=O 

K=oo 

Sketch the root locus o( the system whose characteristic equation is given by 

S4 + 6s3 + 8s2 + Ks + K = 0 

Solution: 

Expressing the given characteristic equation in the form 

1 + G(s) H(s) = 0 

K(s + 1) 
1+ =0 

S4 + 6s3 + 8s2 

K(s + 1) 
:. G(s) H(s) = s2(s+2)(s+4) 

Res 
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Step 1 

Open loop zeros: - 1 

Poles: 0, 0, - 2, - 4 

Step 2 

There are 4 root locus branches starting from the open loop poles and one of them terminates on 
open loop zero at s = - 1. The other three branches go to zeros at infinity. 

Step 3 

Angles of asymptotes 

Since 

Step 4 

Centroid 

Step 5 

n-m=4-1=3 

~ = 60°, 180°, - 60° 

-2-4+1 5 
cr = 

a 3 3 

Root locus on real axis lies between - 1 and - 2, and - 4 to - 00 

Step 6 

Break away point 

The break away point is at s = ° only. 

Step 7 

As there are no complex poles or zeros angle of arrival or departure need not be calculated. 

Step 8 

jro-axis crossing. 

From the characteristic equation, Routh table is constructed. 

Routh Table 

6 

48-K 

6 

48K-K
2 

-6K 
6 
48-K 

6 

K 

8 

K 

K 

° 

K 
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A row of zeros is obtained when, 

48 K - K2 - 36K2 = 0 

48 
K=OorK= -

37 

K = 0 gives s = 0 as the cross over point. 

F K 48 fi' '}' .. 2 or = 37 onnmg aUXl lary equatlOn usmg s row, 

48- 48 
_---=-3..:....7 s2 + 48 = 0 

6 37 

7.784 s2 + 1.297 = 0 

s = ±j 0.408 

The complete root locus is sketched in Fig. 5.21. 

-4 -2 

Fig. 5.21 Root locus for Ex. 5.6. 

Example 5.7 

183 

Re s 

If in the Example 5.7, an open loop zero is introduced at s = - 3, sketch the resulting root locus. What 
is the effect of this zero. 

Solution: 

Since a zero is introduced at s = - 3 on the real axis, the following changes occur. 

1. The number of branches going to infinity is n - m = (4 - 2) = 2. 

2. The angles of asymptotes are 90° and - 90°. 
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3. The centroid is 

-2-4+ 1+3 
cr= =-1 

a 2 

4. Root locus on real axis will now be between (- 2 and - 1) and (- 4 and - 3) 

5. Imaginary axis crossing is only at s = ° for K = 0, as can be seen from Routh table. 

The complete root locus is sketched in Fig. 5.22. 

1m s 

K=O K=oo K=O 

-4 -3 -2 K=O Res 

Fig. 5.22 Root locus for Ex. 5.7. 

The effect of adding a zero at s = - 3 is to bend the root locus towards the left and make the 
system stable for all positive values of K. 

If now a pole is added at s = - 2.5, draw the root locus and find the effect of adding a pole on the 
real axis. 

Example 5.8 

Sketch the root locus of the system shown in Fig. 5.23 

K 

s 

Fig. 5.23 Ststem for Ex. 5.S. 

s+1 

s(s+10) 

C(s) 
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Solution: 

Step 1 

Zeros: - 1 

Poles: 0, 0, - 10 

Step] 

K(s+ 1) 
G(s) H(s) = -:s2~(S'--+-10~) 

185 

3 root locus branches start from open loop poles and one branch goes to the open loop zero at s = -
1. The other two branches go to infinity. 

Step 3 

Since n - m = 2, the angles of asymptotes are 

~ = 90, - 90 

Step 4 

Centroid 

Step 5 

cr = a 
-10+1 

2 = - 4.5 

The root locus on real axis lies between, - 10 and - 1 

Step 6 

The breakaway points 

dK 
= 

ds 

2s3 + 13 s2 + 20s = ° 
The roots are 

s = 0, - 2.5 and - 4 

Since all the roots are on the root locus segments on real axis, all of them are breakaway points. 
Let us calculate the values of K at the break away points. 

At s=O K=O 
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At 

At s =-4 

s = - 2.5 

S2(S + 10) 
K = - ----'-----'-I 

S + 1 s = -2.5 

6.25x7.5 
-1.5 

= 31.25 

16x6 
K=--­

-3 

= 32 

Hence the complete sketch of the root locus is as shown in Fig. 5.24. 

K=O 

-10 K=O 

Fig. 5.24 Root locus of Ex. 5.B. 

Control Systems 

Plot the root locus if the pole at s = - 10 in this example is changed to s = - 9. Also plot the root 
locus if the pole at s = - 1 is changed to s = - 2. 



Root Locus Analysis 187 

Problems 

5.1 Draw the root locus plot of the system with the following open loop transfer functions, with 
unity feedback. Determine the 

5.2 

(a) Centroid, 

(b) angles of a asymptotes, 

(c) break away / break in points, if any, 

(d) Angles of departure / arrival, if any, 

(e) Value of K, if any, for jro-axis crossing and frequency of sustained oscillations for this 
value ofK. 

(i) 
K 

s(s + 4)(s + 11) 

(ii) 
K(s+l) 

s(s+4)(s+11) 

(iii) 
K 

(s + 2)(S2 + s + 2) 

(iv) 
K(s + 1) 

s(s -1) 

Draw the root locus of the system with, 

and 

K 
G(s) = ----::----­

(s + 4)(S2 + 2s + 4) 

H(s) = 1 

Find the value ofK for which the dominant poles of the closed loop system have real parts 
equal to - 0.5. For this value ofK find all the roots of the closed loop system, damping factor 
of the dominant roots, frequency of oscillations, settling time for a unit step input. 

5.3 Draw the root locus of the system, whose characteristic equation is given by, 

s"3 + (4 + K) s2 + (5 + 3K)s + 2K = 0 

For what value ofK, double roots occur in the closed loop system. Find all the closed loop 
poles for this value of K. 

5.4 Determine the break away points, angles of departure and centroid of the root locus for the 
system, 

K(s+3) 
G(s) H(s) = 2 

s(s + 5)(s + 6)(s + 2s + 2) 

Also sketch the root locus. 
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5.5 Consider the root locus of the system, 

K 
G(s) H(s) = s(s + 2) 

1. If a pole is added to the open loop system at s = -~ how does the root locus change. 
Is it stable for all values of K 

2. If a set of complex conjugate poles is added to the open loop system, at s = -3 ±j2, how 
does the root locus change. Is this system stable for all values of K. 

5.6 Sketch the root locus of the system, 

K 
G(s) H(s) = ---­

s(s + 1)(s + 6) , 

1. If a zero at s = -2 is added to the system sketch the root locus and comment on the 
effect of adding a zero. What happens to the break away point. Compare the values of K 
for which the original system and the modified system are stable. 

2. Repeat part (i) With zero added at s = -0.5. 

5.7 Obtain the root locus of the system shown in the Fig P 5.7. What value of K results in a 
damping factor of 0.707 for the dominant complex poles of the closed loop system. Find all 
the closed loop poles for this value of K. 

K 
s+2 

1 

(s + 2)3 

C(s) 

What value of K makes the system oscillatory. What is the frequency of oscillation 

5.8 Sketch the root locus of the system, 

Find 

K(s + 5) (s + 40) 
G(s) H(s) = s3(s+200)(s+1000) 

(a) Centroid and angles of asymptotes 

(b) Angles at which the root town leaves the real axis at s = 0 

(c) Find the values of K for which the root locus crosses the imaginary axis. 

At what points the root locus crosses the jro-axis 
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5.9 Obtain the root locus of the following system as a varies from 0 to 00. 

2(s + 2) 
G(s) H(s) = s(s + a) 

5.10 Sketch the root locus of the system, 

K 
G(s) = S2(S + 2)(s + 5) H(s) = 1 

Investigate the effect of changing the feedback element to 

H(s) = 1 + 2s 

on the root locus. Comment on the stability. 

-~-
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6 Frequency Response of 
Control Systems 

6.1 Introduction 

There are basically two methods of analysis of systems to determine certain properties, so that 
design procedures can be developed, using these properties as performance measures. If a time 
signal like step and ramp are used to excite the system and its time response is obtained, we call it a 
time response analysis or time domain analysis. On the other hand, if a sinusoidal signal of variable 
frequency is used to excite the system and the magnitude and phase of the steady state output from 
the system is measured, we call it frequency response analysis or frequency domain analysis. Both 
the methods have their own advantages and disadvantages. 

6.2 Time Domain Analysis Vs Frequency Domain Analysis 

In the following a comparison of time domain and frequency domain analysis is given. 

(i) Variable frequency, sinusoidal signal generators are readily available and precision measuring 
instruments are available for measurement of magnitude and phase angle. The time response 
for a step input is more difficult to measure with accuracy. 

(ii) It is easier to obtain the transfer function of a system by a simple frequency domain test. 
Obtaining transfer function from the step response is more tedious. 

(iii) If the system has large time constants, it makes more time to reach steadystate at each 
frequency of the sinusoidal input. Hence time domain method is preferred over frequency 
domain method in such systems. 

(iv) In order to do a frequency response test on a system, the system has to be isolated and the 
sinusoidal signal has to be applied to the system. This may not be possible in systems which 
can not be interrupted. In such cases, a step signal or an impulse signal may be given to the 
system to find its transfer function. Hence for systems which cannot be interrupted, time 
domain method is more suitable. 
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(v) The design ofa controller is easily done in the frequency domain method than in time domain 
method. For a given set of performance measures in frequency domain. the parameters of 
the open loop transfer function can be adjusted easily using techniques to be discussed later 
in this chapter. 

(vi) The effect of noise signals can be assessed easily in frequency domain rather than time 
domain. 

(vii) The most important advantage of frequency domain analysis is the ability to obtain the 
relative stability of feedback control systems. The Routh Hurwitz criterion is essentially a 
time domain method which determines the absolute stability of a system. As discussed in Chapter 
4, the determination of relative stability by Routh Hurwitz criterion is cumbersome. Nyquist 
criterion, which will be described in chapter 7, will not only give stability but also relative 
stability of the system without actually finding the roots of the characteristic equation. 

Since the time response and frequency response of a system are related through Fourier transform, 
the time response can be easily obtained from the frequency response. The correlation between time 
and frequency response can be easily established so that the time domain performance measures can 
be obtained from the frequency domain specifications and vice versa. 

6.3 Frequency Response of a Control System 

In Chapter 3 we have discussed the time domain response of second order system to a unit step unit. 
In this section the frequency response of a second order system is obtained and a correlation between 
time domain at frequency domain response will be estbalisehd in section 6.4. 

Consider a second order system with the transfer function, 

C(s) ro~ 
T(s) = R(s) = S2 + 28ro

n
s + ro~ ..... (6.1 ) 

The steady state sinusoidal response is obtained by substituting s = jro in eqn. (6.1). 

COro) ro~ 
T(s) = --= --::---.!!.-----::-

ROro) - ro 2 + 2j8ron ro + ro~ 
..... (6.2) 

Normalising the frequency IV, with respect to the natural frequency IVn by defining a variable 

ro 
u=-

ron 
We have, 

TUro) = 1- u2 + 2j8u 

From eqn. (6.3) the magnitude and angle of the frequency response is obtained as, 

1 

and 

ITUro)1 = M = ---r===== 
~(1- U

2
)2 + 482u2 

28u 
LTUro) = q, = - tan-1 --

I- u2 

..... (6.3) 

..... (6.4) 

..... (6.5) 
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The time response for a unit sinusoidal input with frequency OJ is given by, 

c(t) = 1 Sin (rot _ tan -\ 28U
2

) 

~(1_U2)2 + 482u 2 l-u 
..... (6.6) 

The magnitude and phase of steadystate sinusoidal response for variable frequency can be plotted 
from eqn. (6.4) and (6.5) and are given in Fig. 6.1 (a) and (b). It is to be noted that when, 

u = 0 M = 1, ~ = 0 

u=l 

u ~ 00, 

1 
M= 28' 

M~Oand 

Let us examine whether the magnitude response given by eqn. (6.4), monotonically decreases 
from 1 to 0 or it attains a maximum value and then decreases to zero. If it attains a maximum value 
at some frequency, its derivative should be zero at that frequency. Hence from eqn. (6.4). 

dM 1 2(l-u2)(-2u)+882u 

du =-"2 [o-u2)+482u2P/2 =0 

u3 
- U + 2 82 u= 0 

or 

or ror = ron ~l- 282 
..... (6.7) 

This· frequency where the magnitude becomes maximum is known as the resonance frequency. 
Substituting U = ur in eqn. (6.4), we get the maximum value of the magnitude response. This value of 
M = Mr is known as the resonance peak. Hence, 

1 
M=----;========= 

r ~(1-1+282)2 +482(1-282) 

28JI-82 
..... (6.8) 

Similarly, the" phase angle at resonance frequency is given by, 

,J,. -\ 28Jl- 282 
'f' = tan 

r 1-1 + 282 

..... (6.9) 
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From eqn. (6.7) it can be observed that OJr becomes imaginary for values of 6> ~ and hence if 

6> 0.707, the magnitude response does not have a peak and the response monotonically decreases 
from a value 1 at U = ° to zero at u = 00. If 6 = 0, the magnitude response goes to infinity and this 
occurs at OJr = OJn, the natural frequency of the system. This is depicted in Fig. 6.1. 

(a) 

co 
u=-

1.0 con 
-,~~-------+-----------------.-

___ -l. ___ --='""---=:-. 

(b) 

Fig. 6.1 (a) Frequency response : Magnitude Vs Normalised frequency 

(b) Frequency response: Phase angle Vs Normalised frequency 

One important observation can be made about the resonant peak. From eqn. (6.8) it is clear that 
the resonant peak depends only on the damping factor 6. For a given 0, the resonance frequency is 
indicative of the natural frequency of the system. In otherwords, resonant frequency is a measure of 

4 
the speed of response of the system since settling time Is = --

ocon 

Just as peak overshoot and settling time are used as performance measures of a control system in 
time domain, the resonant peak and resonance frequency can be used as performance measures for 
a control system in frequency domain. 

Another important performance measure, in frequency domain, is the bandwidth of the system. 
From Fig. 6.1, we observe that for 6 < 0.707 and U > ur' the magnitude decreases monotonically. The 

frequency ub where the magnitude becomes ~ is known as the cut off frequency. At this frequency, 

the magnitude will be 20 log ~ = - 3db. 
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As M = 1 at U = 0, control systems are considered as lowpass filters and the frequency at which 
the magnitude falls to - 3db is known as the bandwidth of the system. This is shown in Fig. 6:2. 
Frequencies beyond U = ub are greatly attenuated. 

M 

1.0 

0.707 

Ub --.U 

Fig. 6.2 Magnitude response of a second order system showing bandwidth. 

An expression for bandwidth can be obtained by equating M = 0.707 at U = ub in eqn. (6.4). 

1 

fi J(1- U~} +482 u~ 
Squaring on both sides of eqn. (6.10) and simplifying, we have 

ub 
4 - 2ub 

2 + 1 + 4 82 ub 
2 

= 2 

or ub 
4 - 2 (1 - 2 ( 2) ub 

2 - 1 = 0 

Solving for ub' we get, 

ub = ~(1-282)+~2-482 +484 

Only positive sign is considered in eqn. (6.11) because ub must be positive and real. 

:. COb = COn ~(1-282)+~2-482 +484 

..... (6.10) 

..... (6.11) 

..... (6.12) 

The bandwidth is indicative of the noise characteristics of the system. If the bandwidth is more, 
the system is more succeptible to noise signals. Also for a given 8, the bandwidth tq, is a measure of 
(On and hence the speed of response. If the bandwidth is more, the speed of response is high. 

6.4 Correlation Between Time Response and Frequency Response 

The time doman specifications are obtained by subjecting the second order system to a unit step input. 

The important time domain specification are, 

Peak overshoot M = e -reo/ ~ p for 0 ~ 8 ~ 1 ..... (6.13) 
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Damped frequency of oscillation, rod = ron ~ 

Settling time 
4 

t =-­
s 8ro n 

195 

..... (6.14) 

..... (6.15) 

In frequency domain, the second order system is subjected to a constant amplitude, variable 
frequency. sinusoidal input and the magnitude and phase response are obtained. The important 
frequency domain specifications are, 

1 
Resonant peak M - --=== 

r- 28~ 
for 8 < 0.707 ..... (6.16) 

Resonance frequency ror = ron ~1- 282 ..... (6.17) 

I 

Bandwidth rob = ron [1-282 +~2-482 +484 J2 ..... (6.18) 

Correlation between Mp and Mr 

One important observation can be made with regard to eqns. (6.13) and (6.16). Both Mp and Mr are 
dependent on the damping factor t5 only and hence they are both indicative of damping in the system. 

Given Mp, the resonant peak Mr can be evaluated provided t5is less than 0.707. This condition is 
usually satisfied by many practical control systems as t5 is seldom greater than 0.707. Thus the 
resonant peak Mr and peak overshoot are well correlated. A plot of Mr and Mp with respect to 
damping factor is given in Fig. 6.3. 

Comparison of eqn. (6.14) and (6.17) reveals the correlation between the time domain specification 

2.0 

1.5 

Mr , Mp 
l.0 

0.5 

Fig. 6.3 Correlation of Mr and Mp 

~ 
0.2 0.4 0.6 0.8 

0.707 

1.0 
--.8 

of damped natural frequency and the frequency domain specification of resor':::h; ~requency. For a 

given damping factor t5, the ratio ~ is fixed and given the frequency domain sptci:~.; ,tion, the 
rod 

corresponding time domain specification and vice versa, can be easily obtained. .~ • 



196 Control Systems 

Settling Time and Bandwidth 

The speed of response is indicated by settling time in time domain as given in eqn. (6.15). 
The bandwidth, a frequency domain concept, given by eqn. (6.18), is also indicative of speed of 
response. Thus we can see that there is a perfect correlation between time domain and frequency 
domain performance measures : given one, the other can be obtained easily. Of course one should 
keep in mind that the correlation is valid only for <5 < 0.707, which is usually satisfied in many 
practical control systems. 

6.5 Graphical Representation of Transfer Functions 

In the study of control systems, the performance of a closed loop control system is often predicted 
from the open loop transfer function G(s) or loop transfer function G(s) H(s). Once the transfer 
function of an open loop system is known, its sinusoidal steady state response can be easily obtained 
by replacing s by jm in the transfer function G(s). The function G(jO)) is known as the sinusoidal 
transfer function. G(jO)) has magnitude and phase angle for a given value of 0). In this section we 
will study different types of graphical representations of G(j0)) which are useful in the design of 
control systems and also in ascertaining the stability of the systems. 

6.5.1 Bode plots 

One of the important representations of the sinusoidal transfer function is a Bode plot. In this type of 
representation the magnitude of G(jO)) in db, Le., 20 log I G(jO)) I is plotted against 'log 0)'. 
Similarly phase angle of G(j0)) is plotted against log 0). Hence the abscissa is logarithm of the 
frequency and hence the plots are known as logarithmic plots. The plots are named after the pioneer 
in this field, H. W. Bode. 

The transfer function G(j0)) can be written as 

GUm) = IGUm)1 L~ (m) 

where (1...0)) is the angle of G(j0)). 

..... (6.19) 

Since G(jO)) consists of many multiplicative factors in the numerator and denominator it is 
convenient to take logarithm of I G(j 0)) I to convert these factors into additions and substractions, 
which can be carried out easily. 

Let the open loop transfer function be given in time constant form as, 

G(s) = K(1 + sTaXl + sTb)··· ..... 

( 

S S2 1 sr(l + sT1Xl + sT2) ... 1 + 20- +-2 
ron ron 

. .... (6.20) 

The transfer function may have real zeros, complex zeros, real poles and complex poles. The 
sinusoidal transfer function is obtained by replacing s by jO) in eqn. (6.20). Thus, 
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. Kil + jroTalll + jroTbl 

IGUO)I = [2] 

uronl + jroT11ll + jroT21··· 1 + 28 ~: +( i:) 
Taking 20 log of IGUO)I 

20 log IGUO)I = 20 log K + 20 log 11 + jO) Tal + 20 log 11 + jO) Tbl + .... - 20 log O)f 

_ 20 log 11 + jO) Td - 20 log 11 + jO) T21 ..... _ 20 log 1 + 28 jro +[ jro)2 ..... (6.21) 
ron ron 

Phase angle of GUO) is given by, 

~ (0) = tan-! O)Ta + Tan-! O)Tb + ..... 

! ! ! 200)n - r (90) - tan- O)T! - tan- O)T2 - tan- 0)2 _ 0)2 
n 

..... (6.22) 

The individual tenns in eqns. (6.21) and (6.22) can be plotted w.r.t 0) and their algebraic sum can 
be obtained to get the magnitude and phase plots. Let us now see how these individual tenns can be 
plotted and from the individual plots how the overall plot can be obtained. 

The transfer function mainly contains the following types of tenns. 

(i) Poles or zeros at the origin. 

Factors like ~ 
(jO)r 

where r could be positive or negative depending on whether poles or zeros are present at the 
origin respectively. 

(ii) Real zeros 

F actors of the fonn (1 + j 0) T a) 

(iii) Real poles 

1 
Factors of the fonn ---

(1 + jwT1) 

(iv) Complex conjugate poles 

ro2 

Factors of the form 2 n 
(jro) + 2j8ro ron + ro; 

Dividing by O)n2, we have, 

1 
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(v) Complex conjugate zeros 

Factors of the form [1+2iO :, +( ~: r: 
Let us draw Bode plots for each of these tenns. 

(i) Factor 

If 

K 

(jro Y 

. K 
GGro)= --

(jroY 

20 log IGGro)1 = 20 log ~ 
roT 

db = 20 log K - 20 r (lagro) 

Control Systems 

..... (6.23) 

Iflog (j) is taken an x - axis and db any axis, eqn. (6.23) represents a st line y = mx + c. The slope 
m of this line is 20 r and the intercept any - axis is c = 20 log K. Bode plots are drawn on semi log 
graph sheets in which the x - axis is in logarithmic scale and y-axis is in linear scale. A sample of 
semi log graph sheet is shown in Fig. 6.4. 

20 

15 

10 

db 5 

0 

-5 

-10 

0.1 0.2 0.3 2 3 10 20 30 100 

Fig. 6.4 A sample of semi log graph sheet 

The slope is usually indicated as db/decade or db/octave. Let us calculate db at two different 
frequencies, (j)1 and (j)2' Since K is a constant. 

db l = 20 log K - 20r log ro l 

db2 = 20 log K - 20r log ro2 

db2 - db l = 20r log ro l - 20r log ro2 

ro = 20 r log _1 
ro2 
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if w2 = lOw\, i.e., if there is a decade (10 times) change in frequency, the change in db is given by 

COl 
db2 - db j = 20r log -0- = - 20r log 10 

1 COl 

TherefGre, the slope is given as change in db for a given change in wand is equal to 20 r db/decade 

On the other hand, if w2 = 2w" the change in frequency is said to be one octave. In this case, 

CO 
db2 - db j = 20r log _I = - 20r log 2 

2co l 

= - 6r db/octave 

Depending on the multiplicity of poles we have, 

(i) No pole at origin r = 0, slope is O. 

(ii) Single pole at origin r = 1. 

Slope is - 20 db/dec or - 6 db/oct 

(iii) Double pole at origin r = 2 

Slope is - 40 db/dec or - 12 db/oct 

(iv) Triple pole at origin r = 3 

Slope is - 60 db/dec or - 18 db/oct. 

If r is negative we have zeros at the origin. 

(i) Simple zero at origin r = - 1 

Slope is + 20 db/dec or + 6db/octave 

(ii) Double zero at origin r = - 2 

Slope is 40 db/dec or 12 db/octave and so on. 

In order to draw a straight line we need a point and the slope. 

From eqn. (6.23), at w = 1 we have 

db = 20 log K 

Since K is known, this point can be marked at w = 1 and a line can be drawn with the required 

slope. If there is no pole or zero at the origin the Bode plot is 

db = 20 log K = constant 

i.e., a line parallel to x - axis. It is clear that the phase angle is given by tP (w) = - r (90°). Bode plots 

of ~ for various values of r, are plotted in Fig. 6.5 (a) and (b). 
(Jco ) 
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"-.......... " 40 

........... 
f'. ,....1' 

r- 0 201o! K 
~ ~ 6 db 

Octa~ l"'- i' 20 db 

" I'... K r= 1 

20 

1'" 
........... 

I"-It Odb 

"""r=2 
t'-

, .... 
-20 

0.1 2 10 logro 
'---------.. ----~) y 

decade 

Fig. 6.5 (a) Magnitude plot of ~ for r positive. 
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-20 db/dec 
or 

-6 db/oct 

V 

-40 db/dec 
or 

100 -12 db/oct 

+40 db/dec (Jro), 
~-I0r 

r=-2 +12db/o ct 

40 
I' 

L 
~ 

.,. 
t:l6 db 

~ 

V ...... II~ 
./ 

20 

i""" V Odb 

lL': 
-20 

2 
K 

Fig. 6.5 (b) Magnitude plot of -.-- for r negative. 
(Jro )r 

(ii) Real zero 

~ ..... ---
Vr= -I 

20 db 
I 

20 log K 

10 

1 

20 log [G Gro)[ = 20 log (1 + ro2 T;) 2 

= 10 log (1 + ro 2 Ta2) 

Let us first draw an approximate plot. 

r=O 

100 

For very low frequencies OJ Ta < 1 and eqn. (6.25) can be approximated as, 

10 log 1 = 0 

+20 db/dec 
or 

+6 db/oct 

..... (6.25) 

i.e., for small frequencies the log magnitude curve approaches asymptotically the 0 db line. 
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For very high frequencies ro2 Ta2 » 1 

db = 10 log ro2 Ta2 

1 
or ro» -

Ta 

= 20 log ro + 20 log T a 

201 

..... (6.26) 

This is a straight line with a slope of 20 db/decade. This means the log magnitude curve 
asymptotically approaches the line with a slope of 20 db/dec. The zero db line is called as low 
frequency asymptote and the line with 20 db/dec slope is known as high frequency asymptote. 

If m = _1 in eqn. (6.26), we get zero db, which means the high frequency asymptote intersects the 
Ta 

1 
low frequency asymptote at m = -. 

Ta 

The asymptotic approximation of Bode magnitude plot is shown in Fig. 6.6 (plot a). 

20 

IGlindb 

10 

o 

low fi equency 
• ,asymptote 

I ilk: 

(b) / 

lVta) 

~ ~rdbl 

~ ~3dbll 
(0= 112 T a (0 liT a (0-2/T a 

vI-- (c) 

I 
LG(jO) / 

o 

Fig. 6.6 Bode plot of GUO) = (1 + jO) T a) 

~v 

V 

logO) 

20d b/dec 
high frequency 

asymptote 

Plot (a) Asymptote plot of magnitude Plot (b) Exact plot of magnitude Plot (c) Phase angle plot 
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Thus the Bode magnitude plot of a real zero term can be approximated by the asymptotic plot 

consisting of two straight lines one with a zero slope and the other with a slope of 20 db/dec. These 

two lines meet at OJ = _1_. This frequency is known as a corner frequency. If we want an exact plot 
Ta 

we have to calculate the errors at various frequencies and apply the necessary corrections. 

1 
For OJ < T' the error is given by the difference between the actual value, wpich is 10 log (1 + oJ r) 

and the approximated value which is 10 log 1. 

Thus error = 10 log (1 + 002 T2) - 10 log 1. 

At the corner frequency, OJ = ~, the error is 10 log 2 = 3 db. 
T 

1 
At one octave below the corner frequency i.e., at OJ = 2T' 

error = 10 log (1 + ±) == 1 db 

SitJl:ilarly, for OJ > ~ the error is given by 
" T 

1 
At OJ = -, we have 

T 

error = 10 log 2 - 10 log 1 

= 3 db 

d 
2 . 

an at OJ = T' I.e., one octave above the corner frequency, 

error = 10 log 5 - 10 log 4 

== 1 db 

The exact plot can be obtained by applying the necessary corrections at OJ = ~, OJ = 2~ and OJ = ~. 

< < • . 
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At OJ = ~, a point is marked 3 db above the asymptotic approximation and OJ = 2~ and OJ = ~, 
one db is marked above the asymptotic approximation as shown in Fig. 6.6 (plot b). These three 

points are joined by a smooth curve and extended on both sides asymptotically to the high frequency 

and low frequency asymptotes. 

The phase angle is given by 

~ (co) = tan-1 co Ta 

For 
1 

co«r' ~(co)=O 
a 

1 
co» - ~ = 90° 

Ta 

The Bode phase angle plot is shown in Fig. 6.6 (plot c). 

(iii) Real poles 

For 

GOco)= --
1+ jroTJ 

J 

20 log IG Oco)1 = - 20 (l + co2TJ2) 2" 

db = - 10 log (1 + co2 T 1) 

1 
co« -

TJ 

db=O 

Low frequency asymptote is the zero db line 

For 
1 

co» -
TJ 

db = - 20 log co - 20 log T 1 

..... (6.27) 

..... (6.28) 

High frequency asymptote is a straight line with - 20 db/dec and it intersects the zero db low 

1 
frequency asymptote at OJ = -. 

TJ 
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The phase angle is 

~=O 
1 

for co« -
T[ 

1 
for co = -

T[ 

1 
for co» -

T[ 

Control Systems 

The Bode plots ofmagnitue and phase angle for real pole are given in Fig. 6.7 (plots a and c). 

low Jequ~n~} 
aSYipt,tel 

\0 

o 
~=I)T I 

I 

IGlindb II 
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-20 

o 
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-45 • 

-90 

1 
Fig. 6.7 Bode plot of Guro) = . 

1+ JroT[ 

o db/dec 
I 

-I 2T ro-lIT 
- l.l.: lro=2/Tl 

~dLb'\.. 
to.. 

ldb 
~ ~~ 

'I ro=-
Tl 

~ 
" t'-. 

(a) 

~ l1li. 
V 

~ 

(c) 

I--

logro 

V 

high frequency 
asymptote V 
-20 db/dec 
-6 db/oct 

Plot (a) Asymptote magnitude plot Plot (b) Exact magnitude plot Plot (c) Phase angle plot 
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The exact plot for the real pole factor can be obtained in a similar fashion to that of a zero factor. 

For 

At 

At 

For 

At 

and at 

1 
ill < T the error is given by, 

- 10 log (1 + (ji T2) + 10 log 1 

1 
co = T' the error is - 10 log 2 = - 3 db. 

co = ~, the error is - 10 log (%) = - 1 db. 

1 
co > T' the error is given by, 

- 10 log (1 + co2 T2) + 10 log (co2 T2) 

1 
co = T' the error is, 

- 10 log 2 = - 3 db. 

2 
co = T' the error is, 

- 10 log 5 + 10 log 4 = - 1 db 

112 
Marking the points, 3 db at OJ = T' 1 db at OJ = 2T and OJ = T' below the asymptotic plot of the 

real pole factor and joining them by a smooth curve gives the exact plot as shown in Fig. 6.7 (plot b). 

(iv) Complex conjugate poles. 

G Gco) = ------=-
1 + 2j8~+( jW)2 

Wn Wn 

..... (6.29) 
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For ro « ron 

20 log IG Gro)1 = - 10 log 1 = 0 

Thus the low frequency asymptote is the 0 db line. 

For ro » ron' 

20 log IG Gro)1 = - 10 log (:. J 
= - 40 log ro + 40 log ron 

Control Systems 

..... (6.30) 

Thus the high frequency asymptote is a line with slope - 40 db/dec as given by eqn. (6.30). This 

high frequency asymptote intersects the low frequency asymptote at OJ = OJn because for OJ = OJn in 

eqn. (6.30) 20 log IG (jOJ)1 = o. 
But for values of OJ around the natural frequency OJn, the gain depends on the damping factor as 

can be seen from eqn. (6.29). For various values of 0, the log magnitude curves are shown in 

Fig. 6.8. 

8=0.05 

o 

/ 

~ 
V ¥/0.2 

~~~ ~0.3 
.... 1--' 

r--

~~ 
'f::: 

I 0;8 
f 111ptotic 

'" ~ ~~ 
" 

20 

i 
db 

10 

-10 

-20 

-30 

Fig. 6.8 Bode plot for complex conjugate pole for various values of 8 
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The phase angle is given by, 

For ro » ron 

and for ro = ron 

~ = LG Gro) = - tan-1 

~~o 

~=-tan-l (-28:; J ~ -180° 
~ = - 90° 

207 

..... (6.31) 

When ro is around ron' the phase angle depends on the damping factor 8. The phase angle curves 
are given in Fig. 6.8. 

(v) Complex conjugate zeros 

These plots for complex conjugate zeros are same as for complex conjugate poles except that the 
slopes of asymptotes are positive. 

Now having considered the Bode plots of individual terms, the total plot can be obtained by 
adding these plots at various frequencies as given by eqns. (6.21) and (6.22). Every simple pole 
or zero contributes 0 db to the plot for frequencies below and ± 20 db/dec above the corresponding 
comer frequencies. We can follow the procedure given below to obtain the Bode plot of the given 
transfer function. 

Procedure for Plotting Bode Plot 

Step 1 

Put the transfer function in the time constant form. 

Step 2 

Obtain the comer frequencies of zeros and poles. 

Step 3 

Low frequency plot can be obtained by considering the term ~. Mark the point 20 log K at 
(Jro Y 

OJ = 1. Draw a line with slope -20 r db/dec until the first comer frequency (due to a pole or zero) 
is encountered. If the first comer frequency is due to a zero of order m, change the slope of the 
plot by + 20 m db/dec at this comer frequency. If the comer frequency is due to a pole, the slope 
changes by - 20 m db/dec. 

Step 4 

Draw the line with new slope until the next comer frequency is encountered. 
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Step 5 

Repeat steps 3 and 4 until all comer frequencies are considered. If a complex conjugate pole is 
encountered the slope changes by - 40 db/dec at OJ = OJn• 

Step 6 

To obtain the exact plot, corrections have to be applied at all the comer frequencies and one 
octave above and one octave below the comer frequencies. To do this, tabulate the errors at 
various comer frequencies and one octave above and one octave below the comer frequencies. 
Mark all these points and draw a smooth curve. . 

Step 7 

The phase angle contributed at various frequencies by individual poles and zeros are tabulated and 
the resultant wIgle is found. The angle V s, frequency is plotted to get phase angle plot. 

These steps are illustrated by some examples. 

Example 6.1 

Draw the Bode magnitude and phase angle plots for the transfer function. 

Solution: 

Step 1 

Time constant form 

Step 2 

Comer frequencies are 

Step 3 

5 
Consider the term 

jro 

2000(s+ 1) 
G( s) - ----'-------'--

s(s + 10)(s + 40) 

5(1 +s) 
G(s) - ----'---'---

s(1 + O.ls)(1 + 0.025s) 

Zero: ro = 1 rad/sec 

Poles: ro = 0, ro = 10 rad/sec, ro = 40 rad/sec. 

Mark the point 20 log 5 = 14 db at OJ = 1. The low frequency plot is a straight line with slope 
- 20 db/dec passing through the point 14 db at OJ = 1. The first comer frequency is OJ = 1 radlsec 
and it is due to a zero. Continue the line with slope - 20 db/dec until OJ = 1 radlsec and after this 
the slope will be 0 db/dec as the zero contributes + 20 db/dec for OJ> 1 radlsec. 
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Step 4 

Draw the line with slope 0 db/dec until the next comer frequency of 10 radlsec is encountered. 

This comer frequency is due to a pole and hence it contributes - 20 db/dec for OJ> 10 rad/sec. 

Step 5 

Change the slope of the plot at OJ = 10 sec/sec to - 20 db/dec. Continue this line until the next 

comer frequency, Le., OJ = 40 radlsec. 

At 40 radlsec, the slope of the plot changes by another - 20 db/dec due to the pole. Hence draw 

a line with a slope of - 40 db/dec at this comer frequency. Since there are no other poles or zeros, 

this is the asymptotic magnitude plot for the given transfer function. 

Step 6 

Make a tabular form for the corrections at various frequencies. 

Consider all comer frequencies and one octave above and one octave below the comer frequencies 

as indicated Table. 6.1. 

Table. 6.1 Error table 

Frequency Error due to pole or zero factors in db Total error in db 

1 ] 
0) 1 + jO) 

1 + O.lj(O 1+0.025j(O 

0.5 1 1 

1 3 3 

2 1 1 

5 -1 - 1 

10 -3 -3 

20 - 1 - 1 -2 

40 -3 -3 

80 - 1 - 1 
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Whenever error is positive at a frequency mark a point above the curve and whenever the error is 

negative, mark a point below the curve at that frequency. If there is a overlap due to various comer 
frequencies, the corresponding errors are algebraically added to get the total correction. For example 
the pole with comer frequency 40 rad/sec and pole with comer frequency 10 rad/sec contribute an 

error of - 1 db each at OJ = 20 rad/sec. The total error at OJ = 20'radisec is therefore - 2 db. 

These points are marked on the asymptotic plot and a smooth curve is drawn to obtain the 

magnitude plot. 

Step 7 

To obtain the phase plot, tabulate the angles at various frequencies due to different factors in the 
transfer function as shown in Table. 6.2. The frequencies are generally taken to include all comer 
frequencies and frequencies which are one octave above and one octave below the comer 

frequencies. 

Frequency 

0.5 

1 

2 

5 

10 

20 

40 

80 

200 

500 

1000 

2000(s + 1) 
Table. 6.2 Calculation of angles for G (s) = ----'--'-­

s(s + 1O)(s + 40) 

angles due to 

1 1 1 
- 1 + jco 
jro 1 + O.ljro 1+ 0.025jro 

Total angle 

~1 = -90 ~ - tan-1 co 2 - ~3 = -tan-1 O.1co ~4 = -tan-1 0.025co ~T = ~1 + ~2 + ~3 + ~j 

-90 26.56 - 2.86 - 0.71 - 67.1 

-90 45.0 - 5.71 - 1.43 - 52.14 

-90 63.43 - 11.3 -2.86 - 40.73 

-90 78.69 - 26.56 -7.12 -45.0 

-90 84.3 -45.0 - 14.03 - 64.73 

-90 87.1 - 63.43 - 26.56 - 92.89 

-90 88.56 -75.96 -45.0 - 122.4 

-90 89.28 - 82.87 - 63.43 - 147.02 

-90 90.0 - 87.13 -78.69 - 165.82 

-90 90.0 - 88.85 - 85.42 - 174.27 

-90 90.0 -90.0 - 87.7 -177.7 
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These angles are plotted against log OJ and a smooth curve joining these points gives the phase 
angle plot. The Bode plots are shown in Fig. 6.9. 
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Example 6.2 

Obtain magnitude and phase angle Bode plots for the system 

Solution: 

Step 1 

20(0.ls + 1) 
G(s) - ----'-----'--­

- s2(0.2s + 1)(0.02s + 1) 

Since G(s) is in time constant form, this step is not necessary. 

Step 2 

Comer frequencies are 

Zeros: 
1 

ro = - = 10 rad/sec 
a 0.1 

Poles: Double pole at ro 1 = 0 

1 
ro2 = 0.2 = 5 rad/sec; 

1 
ro = -- = 50 rad/sec 

3 0.02 . 

Step 3 

Consider the term ~ 
(jro) 

Since K=20 

20 log K = 20 log 20 

= 26 db 

Control Systems 

Mark the point 26 db at (j) = 1 radlsec. Since there is a double pole at origin, draw a line with 

- 40 db/dec passing through the point 26 db at (j) = 1 radlsec. As the next comer frequency is due 

to a pole at 5 radlsec continue this line upto (j) = 5 rad/sec. 
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Step 4 

From (j) == 5 rad/sec draw a line with slope - 60 db/dec since there is a pole at 5 rad/sec. 

Continue the line with - 60 db/dec until the next comer frequency is encountered, which in the 

present case is a zero with (j)a == 10 rad/sec. 

This zero contributes a + 20 db/dec and hence after (j) == 10 rad/sec, the slope of the line would be 

(- 60 + 20) == - 40 db/dec. 

Step 5 

Draw a line with slope - 40 db/dec at this point until the next comer frequency, which in this case 

is a pole at OJ3 == 50 rad/sec. After this frequency, the slope of the magnitude plot will be 

(- 40 - 20) == - 60 db/dec. 

Since there are no other poles or zeros, this line will continue as high frequency asymptote. 

Step 6 

Error table is constructed in Table. 6.3 

Table 6.3. Error table for Ex. 6.2 

Frequency Error due to pole and zero factors, in db Total error in db 

1 1 

1 + 0.2jeo 0.1 jro + 1 
0.02jeo + 1 

2.5 - 1 - - - 1 

5 -3 + 1 -2 

10 - 1 +3 +2 

20 + 1 1 

25 -1 - 1 

50 -3 -3 

100 - 1 - 1 
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The corrections are marked on the magnitude plot. A smooth curve is drawn through these points 

and approaching the low frequency and high frequency asymptotes as shown in Fig. 6.10. 

2 0 

) IG (jro 
in db 

0 

-2 0 

-4 0 

0 

-9 0 

LG(jro ) 

-18 A. 

-27 0 

~ 
.~ 

U.l 1 

Fig. 6.10 Bode plot for Ex. 6.2 
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Step 7 

The phase angle is calculated at different frequencies as shown in Table 6.4. 

20(0.ls+l) 
Table 6.4 Phase angle of G(s) = s2(0.2s + 1)(0.02s + 1) 

Angles due to pole and zero factors 

1 1 1 
Frequency -- O.1jeo + 1 (jm )2 O.2jro + 1 O.02jro + 1 

~1= - 180 ~2 = - tan-1 0.2eo ~3 = tan-1 O.leo ~4 = - tan-1 0.02eo 

0.1 - 180 - 1.14 0.57 - 0.11 

1.0 - 180 - 11.3 5.71 - 1.14 

2.5 - 180 - 26.56 14.0 - 2.86 

5.0 - 180 - 45.0 26.56 - 5.71 

10.0 -180 - 63.43 45.0 - 11.3 

20.0 -180 -76.0 63.43 - 21.8 

50.0 - 180 - 84.3 78.69 - 45.0 

100 - 180 - 87.0 84.3 - 63.43 

200 - 180 - 88.6 87.0 -75.96 

1000 - 180 - 89.7 89.4 - 87.13 

The phase angle plot is obtained as shown in Fig. 6.10. 

Example 6.3 

Obtain Bode plots for the system 

Solution: 

Step 1 

100 
G( s) = ----::,------­

S(S2 +12s+100) 

Total angle 

~T = 91 + 92 + 93 +94 

- 180.68 

- 186.73 

- 195.42 

- 204.16 

- 209.73 

- 214.37 

- 230.63 

- 246.13 

- 257.56 

- 267.43 

Put the transfer function in time constant form. For the complex poles, lVn =10 and 20lVn = 12 

12 
:. 8 = 2 x 10 = 0.6 

100 
G(s) - ------=­

- 100s(1 + 0.12s + 0.0 1s2) 

GUm) = . ( 0 . 00 2\ Jm 1+ .12Jm- . 1m ) 
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Step 2 

The comer frequencies are 

Zeros: None 

Poles: 0) = 0, O)n = 10 rad/sec. 

Step 3 

Draw the low frequency asymptote corresponding to ~ 
JO) 

At OJ = 1 radlsec, 

20 log K = 20 log 1 = 0 db. 

Control Systems 

Draw a line with -20 db/dec passing through the point 0 db at OJ = 1 radlsec. Continue this line 
until the comer frequency of complex pole at OJn = 10 radlsec is encountered. 

Step 4 

At OJn = 10 radlsec since we have a set of complex conjugate poles the slope of the plot will change 
by - 40db/dec. Draw a line with - 60 db/dec at OJ = 10 rad/sec. 

Step 5 

Since there are no other poles and zeros, this magnitude plot is complete. 

Step 6 

Draw table of errors. Since we have complex poles with OJn = 10 rad/sec and 8= 0.8. we have to 

calculate the error at different frequencies around OJn = 10 radlsec and obtain the actual plot. 

Table 6.5 Error table for G(s) = S(S2 + 12s + 100) 

Frequency error = -10 log [(1 - 0.01 0)2)2 + 0.01440)2J for 0) < 10 

= -10 log [(1 - 0.01 0)2i + 0.01440)2J + 40 log ~ for 0) > 10 

1 0.024 

5 0.35 

10 - 1.58 

20 0.35 

50 0.1 

100 0.024 
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The actual plot is obtained in the usual way as shown in Fig. 6.11. 
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Fig.6.11 Bode plot for Ex. 6.3 (a) Magnitude plot (b) Phase angle plot 
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Step 7 

The phase angle plot is obtained by actually calculating the phase angle at various frequencies as in 
Table. 6.6. 

100 
Table. 6.6. Phase angle of O(s) = S(S2 + 12s + 100) 

Angle due to poles and zeros 

1 1 
Frequency - Total angle 

jro 1 + 0.12jro + (jro )2 
100 

~l = - 90° ~2 = -tan-l 
0.12ro 

1-0.0Iro2 ~T = ~l + ~2 

1 -90 - 6.91 - 96.91 

5 -90 - 38.66 - 128.66 

10 -90 -90.0 - 180.0 

20 -90 - 141.34 - 231.34 

50 -90 - 165.96 - 255.96 

100 -90 - 173.0 - 263.0 

Using the values in Table. 6.6 we can obtain the phase angle plot as shown in Fig. 6.11. 

6.5.2 Polar Plots 

Let us now consider another graphical representation of sinusoidal transfer function G (jOJ). For a 
given value of OJ, G (jOJ) is a complex number and it has magnitude and angle. Thus 

o Gro) = 10 Gro)1 LO Gro) 

=ML8 ..... (6.32) 

As OJ IS changed, both magnitude M and phase angle () of G (jOJ) can be represented as a phasor 
with magnitude M and angle () for a given frequency. As OJ is changed from 0 to ex:; this vector 
changes in magnitude and phase angle and the tip of this phasor traces a curve. This curve is known 
as polar plot of the given transfer function. This plot is useful in determining the stability of the 
system in frequency domain, using Nyquist stability criterion, to be discussed in chapter 7. It not 
only gives absolute stability of the system but also the relative stability. 

To draw the exact plot the magnitude and angle are calculated for OJ = 0 to ex:; and polar graph 
sheets are used (0 plot these values. Polar graph sheet contains concentric circles uniformly spaced 
and a number of radial lines from the centre of these circles. At any given frequency, magnitude of 
transfer function can be marked using the circles and angle of the transfer function can be marked 
using the radial lines. 
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A sample plot is shown in Fig. 6.12. 

Fig. 6.12 Sample of polar plot 

Usually a rough sketch is adequate to determine the stability and other aspects of a system. Let us 

consider some examples of obtaining the polar plots. 

Example 6.4 

1 
Draw the polar plot of G(s) = -­

I+TJs 

Solution: 

The sinusoidal transfer function is given by 

At 0) = 0 M= 1 

GUO)) = --
1+ jcoTJ 

ML9 

9=0 

This is represented by point A in Fig. 6. 13. 

At co = 00 M=O 9=-90 

This is represented by point 0 in Fig. 6.13. 
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For any 0:::: co:::: 00, M:::: 1 and 0:::: e:::: - 90. In fact the locus of the magnitude of 10 Gco)1 can be 

shown to be a semi circle. The complete polar plot is shown in Fig. 6.13. 

o 
00=00 

1 
Fig. 6.13 Polar plot of G(s) = -­

l+Tl s 

Example 6.S 

1m GUm) 

1 
Draw the polar plot of O(s) = s(1 + TIs) 

Solution: 

At co = 0 o Gco) = - T] - j 00 

= 00 L - 90° 

---.00=0 

A 

At co = 00 o Gco) = - 0 - jO = 0 L -180° 

the polar plot is sketched in Fig. 6.14. 

1 
Fig. 6.14 Polar plot of G(s) = --­

s(1 + TIs) 

1m GUm) 

00=00 

Re GUm) 

Re GUm) 
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Comparing the transfer functions of Exs. 6.4 and 6.5 we see that a pole at origin is added to the 

transfer function of Ex. 6.4. The effect of addition of a pole at origin to a transfer function can be 

seen by comparing the polar plots in Fig. 6.13 and 6.14. The plot in Fig. 6.13 is rotated by 90° in 

clock wise direction both at ro = 0 and ro = 90°. At ro = 0 the angle is - 90° instead of 0 and at ro = 00 

the angle is - 180° instead of - 90°. We say that the whole plot is rotated by 90° in clockwise 

direction when a pole at origin is added. 

A sketch of the polar plot of a given transfer functioIi •. can be drawn by finding its behaviour at 

ro = 0 and ro = 00. 

Example 6.6 

Draw the polar plot ofG(s) = ----­
(1 + T]s)(1 + T2s) 

Solution: 

In this example, a non zero pole is added to the transfer function of example 6.4. 

Let us examine the effect of this on the polar plot. 

At ro = 0 . 1 I [G Oro)1 = M = (1 + jroT])(1 + jroT
2

) ro = 0 = 1 

At ro = 00 [G Oro)[ = M = 0 L -180° 

(Since ro = 00, the real part can be neglected and hence the magnitude is 0 and angle is - 180°) 

The polar plot is sketched in Fig. 6.15. 

Thus we see that the nature of the plot is unaffected at ro = 0 but the plot rotates by 90° in 

clockwise direction at ro = 00. 

Similarly if a zero is added at some frequency, the polar plot will be rotated by 90 in anticlockwise 

direction at ro = 00. 

Im G(joo) 

00 = co +-- 1 --.00 = 0 

1 
Fig. 6.15 Polar plot of G(s) = ----­

(1 + T]s)(1 + T2s) 
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Some examples of polar plots are shown in Fig. 6.16, which clearly demonstrate the aspect of 

adding poles at origin and poles at other frequencies. 

1m GUm) 1m GUm) 

1 
G(s) = -----

s(l + T\s)(l + T2s) 

1 
G(s) - --------

(1 + T\s)(1 + T2s)(1 + T3 S) 

ReGUm) ReGUm) 

m=O 

CQ = 0 

(a) (b) 

1m GUm) 1m GUm) 

m=oo ReGUm) ReGUm) 

(c) (d) 

Fig. 6.16 Polar plot of some transfer functions. 

6.5.3 Log Magnitude Vs Phase Plots 

Another graphical representation of a transfer function is by plotting log magnitude of the transfer 
function in db versus the phase angle at various frequencies. Usually the Bode plots are first obtained 
and the magnitude in db and phase angle at a given frequency are read from them. Magnitude in db 
is plotted against phase to obtain the log magnitude Vs phase angle plot as shown in Fig. 6.17 

The advantages of these plots are that the relative stability can be determined with case and 
compensators can be designed easily. 
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Fig. 6.17 Log magnitude Vs phase angle. 

6.6 All Pass Systems 

223 

A system which passes all frequencies without any attenuation is known as an all pass system or all 
pass filter. Such systems are characterised by the transfer functions which have a zero in mirror 
image position with respect to the imaginary axis of s-plane for every pole in the left half of s-plane. 
We have seen in chapter 4, that for stable systems the poles must lie in the left half of s-plane only. If 
for every left half of s-plane pole there is a correspondinlS right half plane zero at mirror image 
position, such a system is known as an all pass system. Consider the system, 

I-Ts 
G(s) = 1 + Ts 

The pole zero locations are shown in Fig. 6.18. 

1m s 

-liT 

Fig. 6.18 Pole zero pattern of all pass system. 

For s = jOJ, magnitude of G(s) is 

s-plane 

liT Res 

= 1 
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The magnitude is independent of ro and hence it passes all frequencies with a gain of unity. 

The angle of G Oro) is given by 

LG Oro) = - 2 tan-
j 

roT 

As ro is increased from 0 to 00, the angle changes from 0 to - 1800
• 

6.7 Minimum Phase Systems 

A system with all zeros and poles in the left half of s-plane is known as a minimum phase function. 

For a stable system all poles have to b~ necessarily in the left half of s-planes. However, there is no 

restriction on the zeros of the transfer function. Consider a system with one zero in the right half of 

s-plane and two poles in the left half of s-plane. 

I-T s 
G(s) - a 

(1 + Tj s)(1 + T2s) 

This can be written as 

= Gj(s). Ga(s) 

Here G(s) is considered as a product of two transfer functions Gj(s) and Ga(s). G1(s) has all poles 

and zero in the left half of s-plane. GaCs) is an all pass system. Since the contribution of GaCs) to 

magnitude of G(s) is unity, the magnitude plot of G(s) and G/s) are identical. But the all pass system 

contributes angles 0 to - 180 as m is changed from 0 to -180°, the angle of G(jm) will be more than 

the angle of GjOm) for all frequencies. Thus G(jm) and GjOm) have same magnitude plots but 

different phase angle plots. Thus it is evident that the phase angle of a transfer function could be 

changed without affecting its magnitude characteristic, by adding an all pass system. 

Hence for a given magnitude characteristic GjOm) has the least phase angle compared to G(jm). 

Thus GjOm) which has all poles and zeros in left half plane is known as minimum phase system. 

G(jm) which has one or more zeros in right half plane, but has the same magnitude plot is a non 

minimum phase system. A minimum phase function has a unique magnitude, phase angle relationship. 

For a non minimum phase function for a given magnitude characteristic, the phase angle is more 

lagging than the minimum phase function. 

These larger phase lags are usually detrimental to the system and hence they are avoided in control 

systems. The phase angle characteristics of minimum, all pass and non minimum phase functions 

Gj(s), Ga(s) and G(s) are shown in Fig. 6.19. 
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G1 Goo) 

_90+-____ ~~~----~======m=in;i=mumph~e 
Ie GaGro) + ~___ all pass 
-180~--------~~----------

-270~------------------~=-

Fig. 6.19 Phase angle characteristics of minimum phase, all pass and non minimum phase systems 

For a given non minimum phase transfer function, it is always possible to get the corresponding 
minimum phase function which has exactly the same magnitude characteristic but least phase angle 
characteristic. To do this, for every right half plane zero of the given transfer function, associate an 
all pass function and add a zero in the left half plane at corresponding position so that the magnitude 
curve remains the same. 

Consider 

G(s) 
(1- 2s)(1- 5s) 

s(1 + 3s)(1 + lOs) 

(1 + 2s)(1 + 5s) ( 1 - 2s ) (l - 5s) 
s(l + 3s)(1 + 1 Os)· 1 + 2s (l + 5s) 

= Gl(s). Gal(s) Gais) 

Gl(s) is required minimum phase function Gal(s) and Ga2 are all pass functions. Gl(s) has same 
magnitude curve as G(s) but has the least phase angle curve. 
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Problems 

6.1 Find the frequency response specItications Mr, ror' rob for the systems with the following 
closed loop transfer functions. 

(a) 
16 

S2 +4.8s+16 

(b) 
32 

s2+8s+32 

(c) 
100 

S2 +16s+100 

(d) 
64 

S2 +6.4s+64 

6.2 For the following open loop transfer functions with unity feedback, draw the Bode plot and 
determine the frequency at which the plot crosses the 0 db line. 

2000 
(a) s(s + 2)(s + 100) 

15(s + 5) 
(b) S(S2 + 16s + 100) 

lOs 
(c) 

(O.ls + l)(O.Ols + 1) 

6.3 Sketch the Bode flot for the following systems and determine the value of K for which the 
magnitude plot crosses the 0 db line at ro = 15 rad/sec. 

K(s + 2) 
(a) s(s + 4)(s + 10) 

K 
(b) s(1+s)(1+0.ls)(1+0.01s) 
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6.4 The asymptotic approximation of the gain plot is given in the following figures. Obtain the 
open loop transfer function in each case. 

db 
o db/dec 

14 db - - - - - -"'"----------.. 

(a) 
0.1 2 10 ~logO) 

db 

10 20 logO) 
(b) 

-14db - - - - - - - - - - - --

6.5 The following data refers to the frequency response test conducted on an open loop system. 
Plot the Bode magnitude plot and approximate by asymptotes to obtain the transfer function. 

(0 rad/sec 0.2 0.5 1 1.5 2 2.5 4 5 8 10 20 50 

Gain 9.85 6.68 1.57 0.914 0.62 0.46 0.25 0.19 0.1 0.072 0.022 0.004 

6.6 For the following unity feedback system obtain the values ofK and 't to get a peak resonance 
of 1.26 at a resonance frequency of 10.5 rad/sec. 

K 
G(s)- -­

s('ts + 1) 

Also find the peak overshoot and settling time for a unit step input. 

6.7 Draw the frequency response curve of the following closed loop transfer function and 
obtain Mr and (Or· 

C(s) 540 

R(s) (s + 15)(s2 + 4s + 36) 

Where will the poles of equivalent second order system be located. 
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6.8 Sketch the polar plots of the following open loop transfer functions. Find the frequency at 
which the plot crosses the negative real axis and the magnitude of GUoo) at this frequency. 

10 
(a) (s + 1)(s + 3) 

10 
(b) s(s + 1)(s + 5) 

10 
(c) (s + 1)(s + 3)(s + 5) 

(1 + 0.2s) 

(d) s2(1 + O.Ols)(1 + 0.05s) 

6.9 Sketch the polar plot of the function, 

10 
G(s) = s(s + 5)(s + 10) 

For what value of 00, IGUoo)1 = 1. At this frequency what is the phase angle of GUoo). 



7 Nyquist Stability Creterion and 
Closed Loop Frequency Response 

7.1 Introduction 

In chapter 4, it was shown that the location of the roots of the characteristic equation determines 
whether a system is stable or not. If all the roots lie in the left half of s-plane, the system is absolutely 
stable. If simple roots are present on the imaginary axis of the s-plane, sustained oscillations in the 
system will result. Using Routh Hurwitz criterion, a simple way of determining the roots in the right 
half of s-plane or on the imaginary axis was discussed. But Routh-Hurwitz criterion gives only absolute 
stability but does not tell us about how much stable the system is i.e., it can n~t throw any light on 
relative stability of the system. Root locus technique discussed in chapter 5, can be used to determine 
the location of closed loop poles on the s-plane from the location of poles and zeros of the open loop 
system when one parameter of the system, usually the gain, is varied. This also does not give a 
measure of the relative stability of the system. 

A frequency domain technique is developed in this chapter, which gives a simple way of determining 
the absolute stabilitY of the system, and also defines and determines the relative stability of a system. 

This frequency domain criterion is known as Nyquist Stability Criterion. This method relates the 
location of the closed loop poles of the system with the frequency response of the open loop system. 
It is a graphical technique and does not require the exact determination of the closed loop poles. Open 
loop frequency response can be obtained by subjecting the system to a sinusoidal input of constant 
amplitude and variable frequency and measuring the amplitude and phase angle of the output. 

The development of Nyquist Criterion is based on a theorem due to Cauchy, 'the principle of 
argument' in complex variable theory. 
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7.2 Principle of Argument 

Consider a function of complex variable's', denoted by F(s), which can be described as a quotient of 
two polynomials. Assuming that the two polynomials can be factored, we have 

..... (7.1) 

Since s = a + jOJ is a complex variable, for any given value of s, F(s) is also complex and can be 
represented by F(s) = u + jv. For every point s in the s-plane at which F(s) and all its derivatives exist, 
ie, for points at which F(s) is analytic, there is a corresponding point in the F(s) plane. It means that 
F(s) in eqn. (7.1) maps points in s-plane at which F(s) is analytic into points in F(s) plane. In 
eqn. (7.1) s = - PI's = - P2 are the poles of the function F(s) and therefore the function goes to 
infinity at these points. These points are also called singular points of the function F(s). 

Now, consider a contour .s in s-plane as shown in Fig. (7.1) (a). Assume that this contour does 
not pass through any singular points of F(s). Therefore for every point on this contour, we can find 
a corresponding point in F(s) plane, or corresponding to the contour .5 in s-plane there is a contour l' 
in F(s) plane as shown in Fig. 7.1 (b). 

jro s-plane 
'ts 

S3 

(j 

Fig. 7.1 (a) Arbitrary contour 't. in s-plane not 
passing through singular points of F(s) 

jv F(s)-plane 

--~----~--~---7U 

Fig. 7.1 (b) Corresponding F(s)-plane 
contour't

f 

Let us consider a closed contour and define the region to the right of the contour, when it is 
traversed in clockwise direction, to be enclosed by it. Thus the shaded region in Fig. 7.1(a) is considered 
to be enclosed by the closed contour .s' Let us investigate some of the properties of the mapping of 
this contour on to F(s)-plane when .s encloses (a) a zero of F(s) (b) a pole of F(s). 

Case a: When .s encloses a zero of F(s) 

Let s = -Zj be encloses by the contour .s as shown in Fig. (7.2) (a). 

// ~ ..... 

/ / (SI+P3) I 

_p'X (SI+Z2) I 
3 0 

-Zz 
Fig. 7.2 (a) Contour ts encloses one zero 

s = Z1 of F(s) 

jv 
F(s) F(s) plane 

U 

Fig. 7.2 (b) Corresponding F(s) plane 
contour't

f 
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For any point s = sl' we have 

..... (7.2) 

where 0.1 = lSI + zd, 0.2 = lSI + ~I, ..... am = lSI + zml 

PI = lSI + Pll, P2 = lSI + P21, •.•.• Pn = lSI + Pnl 

and 91 = /(sl + zl)' 92 = /(sl + ~), ..... 9m = [(Sl +~) 

1\>1 = /(Sl + PI)' 1\>2 = [(Sl + P2)' ..... I\>n = [(Sl + Pn) 

In the development of Nyquist criterion the magnitude of F(s) is not important, as we will see 
later. Let us concentrate on the angle of F(s). 

In Fig. 7.2(a), as the point s moves on the contour 's in clockwise direction, and returns to the 
starting point, let us compute the total angle described by F(s) vector as shown in Fig. 7.2(b). 

The vector (s + zl) contributes a total angle of -27t to the angle of F(s) as shown in Fig. 7.3(a) 
since the vector (s + zl) makes one complete rotation. This is because the point s = - zl lies inside the 
contour. 

jw 
s-plane 

Fig. 7.3 (a) Angle contributed by (s + Z1) to F(s) 

The vector (s + Z 2)' contributes zero net angle for one complete traversal of the point s on the 
contour 's in s-plane as shown in Fig. 7 .3 (b). This is because the point s = - z2 lies outside the 
contour 's' 

jw 
s-plane 

Fig. 7.3 (b) Angle contributed by (s + Z2) to F(s) 
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Similarly all the zeros and poles which are not enclosed by the contour 's' contribute net zero 

angles to F(s) for one complete traversal of a point s on the contour 's' Thus the total angle contributed 
by all the poles and zeros of F(s) is equal to the angle contributed by the zero s = - zl which is 
enclosed by the contour. The F(s) vector describes an angle of - 21t and therefore the tip of F(s) 

vector describes a.closed contour about the origin of F(s) plane in the clockwise direction. Similarly 
if k zeros are enclosed by the s-plane contour, the F(s) contour will encircle the origin k times in the 
clockwise direction. Two cases for k = 2 and k = 0 are shown in the Fig. 7.4 (a) and (b). 

s-plane jro F(s) plane 
x x 

u 

x x 

Fig. 7.4 (a) s-plane contour and F(s) plane contour for k = 2. 

jro s-plane jv F(s) plane 
x x 

t 
s 

0' u 

x 

Fig. 7.4 (b) s-plane contour and F(s) plane contour for k = O. 

Case b : When 'ts encloses a pole of F(s) 

When a pole of F(s), s = -PI is enclosed by the contour 's' a net angle of21t is contributed by the 
vector (s + PI) to F(s) as the factor (s + PI) is in the denominator of F(s). Thus the F(s) plane contour 
will encircle the origin once in the anticlockwise direction. 

If s-plane contour 's encloses P poles and Z zeros, the F(s) plane contour encircles the origin 
P times in the anticlockwise direction and Z times in the clockwise direction. In otherwords, it 
encircles the origin of F(s) plane (P - Z) times in the anticlockwise direction. The magnitude and 
hence the actual shape of the F(s) plane contour is not important, but the number of times the 
contour encircles the origin is important in the development of Nyquist stability criterion, as will be 
discussed in the next section. This relation between the number of poles and zeros enclosed by the 
closed s-plane contour 's' and the number of encirclements of F(s) plane contour 't is known as the 
principle of Argument. 
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7.2.1 Nyquist Criterion 

For a feedback control system with loop transfer function given by : 

K(s + ZI)(S + Z2).····(S + Zm) 
G(S) H(s) = m S n 

(s + Pl)(S + P2) .... ·(S + Pn) 

m 

1t(S + ZJ 
= K .!:i=:.!....l -­

n 

1t(S+PJ) 
J=1 

The characteristic equation is given by 

m 

K 1t(s+z\) 
i=1 D(s) = I + G(s) H(s) = I + -n":""":-'-- = 0 

.1t(s+p) 
J=1 

n m 
1t (S + p j) + K 1t (s + Z\ ) 

J=1 1=1 
-"----n----- = 0 

1t (S + PJ) 
j=l 
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..... (7.3) 

..... (7.4) 

The numerator of eqn. (7.4) is a polynomial of degree n and hence it can be factored and written as 

(s + z;)(s + z;) ..... (s + z~) 
D(s) = n = 0 ..... (7.5) 

1t(s+Pj) 
J=1 

Thus it can be observed that: 

1. The poles of the open loop system G(s) H(s) and poles of D(s) are the same 
(eqns. (7.3) and (7.5» 

2. The roots of the characteristic equation D(s) = 0 are the zeros of D(s) given by -z;, -z;, .... -z~ 
in eqn. (7.5). 

3. The closed loop system will be stable if all the poles of the closed loop system, ie, all the roots 
of the characteristic equation lie in the left half of s-plane. In otherwords, no pole of the closed 
loop system should be in the right half of s-plane. 

4. From eqn. (7.4) and (7.5), it is clear that even if some poles of open loop transfer function 
(-PI' -P2' ... -Pn) lie in right half of s plane, the closed loop poles, or the zeros ofD(s) = 0 ie 
s = - z ;, - z; etc many all lie in the left half of s-p lane. Thus even if the open loop system is 
unstable, the closed loop system may be stable. 
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In order to detennine the stability of a closed loop system. we have to find if any of the zeros of 
characteristic equation O(s) = 0 in eqn. (7.5) lie in the right half of s-plane. Ifwe consider an s-plane 
contour enclosing the entire right half of s-plane, plot the O(s) contour and find the number of 
encirclements of the origin, we can find the number of poles and zeros of O(s) in the right half of 
s-plane. Since the poles ofO(s) are the same as open loop poles, the number of right half plane poles 
are known. Thus we can find the number of zeros of O(s) ie the number of closed loop poles in the 
right half of s-plane. If this number is zero. then the closed loop system is stable, otherwise the 
system is unstable. 

7.3 Development of Nyquist Criterion 

7.3.1 Nyquist Contour 

Let us consider a closed contour, 'N which encloses the entire right half of s-plane as shown in 
Fig. 7.5. This contour is known as a Nyquist Contour. It consists of the entirejaraxis and a semicircle 
of infinite radius. 

Fig. 7.5 Nyquist Contour 

On the jeo-axis, 

jco joo 

-joo 

s-plane 

cr 

s = jeo and eo varies from - 00 to + 00. 

On the infinite semicircle, 

s = It 
R--+oo 

'S 1t 1t 
Rel , 8 varies from + - to 0 to - -

2 2 
Thus the Nyquist Contour encloses the entire right half of s-plane and is traversed in the clockwise 

direction. 

7.3.2 Nyquist Stability Criterion 

If 

n 

1t(s + zJ 
O(s) = ":"':..0.1 __ _ 

,1t(s+p) 
J=1 

..... (7.6) 

is plotted for values of s on the Nyquist contour, the O(s) plane contour will encircle the origin N 
times in the counter clockwise direction, where 

N=P-Z ..... (7.7) 

and P = number of poles of O(s) or the number of open loop poles in the right half of s-plane 
(R.H.S) 

Z = Number of zeros of O(s) or the number of closed loop poles in the RHS. 
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If the closed loop system is stable, 

z==o 

Thus, for a stable closed loop system, 

N==P 
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..... (7.8) 

i.e., the number of counter clockwise encirclements of origin by the O(s) contour must be equal to 
the number of open loop poles in the right half of s-plane. Further, if the open loop system is stable, 
there are no poles of G(s) H(s) in the RHS and hence, 

p==o 

.. For stable closed loop system, 

N==O 

i.e., the number of encirclements of the origin by the O(s) contour must be zero. 

Also observe that G(s) H(s) == [1 + G(s) H(s)] - 1 

..... (7.9) 

Thus G(s) H(s) contour and O(s) == 1 + G(s) H(s) differ by 1. If 1 is substracted from 
O(s) == 1 + G(s) H (s) for every value of s on the Nyquist Contour, G(s) H(s) contour will be obtained 
and the origin of O(s) plane corresponds to the point (- 1, 0) of G(s) H(s) plane, this is shown 
graphically in Fig. 7.6. 

Im 

D(s) = 1 + GH-plane 

GH-plane. 

Re 

Fig. 7.6 O(s) = 1 + G,H plane and GH plane Contours 

If G(s) H(s) is plotted instead of 1 + G(s) H(s), the G(s) H(s) plane contour corresponding to the 
Nyquist Contour should encircle the (-1, jO) point P time in the counter clockwise direction, 
where P is the number of open loop poles in the RHS. The Nyquist Criterion for stability can now be 
stated as follows: 

If the 'tGH Contour of the open loop transfer function G(s) H(s) corresponding to the Nyquist 
Contour in the s-plane encircles the (-1, jO) point in the counter clockwise direction, as many times 
as the number of poles ofG(s) H(s) in the right half of s-p1ane, the closed loop system is stable. In the 
more common special case, where the open loop system is also stable, the number of these 
encirclements must be zero. 
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7.3.3 Nyquist Contour When Open Loop Poles Occur on jro-axis 

IfG(s) R(s) has poles on the jro-axis, 1 + G(s) R(s) also has these poles on the jro-axis. As the Nyquist 
Contour defined in section 7.2.2 passes through these jro-axis poles, this Contour is not suitable for 
the study of stability. No singulasitics of 1 + G(s) R(s) should lie on the s-plane Contour "s' In such 
cases a small semicircle is taken around these poles on the jro-axis towards the RHS so that these 
poles are bypassed. This is shown in Fig. 7.7. 

jro 
s-plane 

(j 

Fig. 7.7 Nyquist Contour when jro-axis poles are present 

If an open loop pole is at s = ±j tVI , near this point, s is taken to vary as given be eqn. (7.10). 

7t 7t 
S = jro l + E~O E e19

, 8 changes from - "2 ~ 0 ~ "2 ..... (7.10) 

This describes the semicircle around the pole s = jtV l in the anti clockwise direction. Let us now 
consider some examples illustrating how the Nyquist plots are constructed and the stability deduced. 

Example 7.1 

Let us obtain the Nyquist plot of a system whose open loop transfer function G(s) R(s) is given by 

10 
G(s) R(s) = (s + 2)(s + 4) 

Solution: 

The Nyquist path is shown in Fig. 7.8(a). 

s-plane 

o 
(j 

Fig. 7.8 (a) Nyquist path 

Let us plot G(s) R(s) over the contour 't
5

• 
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1. On the jro-axis if ro changes from 0 to +00 

S = jro 

10 
IG(s) H(s)ls = JOl = (jro + 2)(jro + 4) 

For ro = 0 

For ro = 00 

10 
IG(s) H(s)1 = 8 = 1.25; 

IG(s) H(s)1 = 0; 

/G(s) H(s) = 0 

/G(s) H(s) = -180° 
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As the exact shape of G(s) H(s) is not required we can draw this part of the GH Contour by 
noting that the angle of GH changes from 0 to - 180 as ro changes from 0 to 00. 

ImGH 
GH plane 

s = ao s=o 
1.25 Re GH 

Fig. 7.8 (b) Part of GH plot for s = jO to s = jao 

2. For the infinite semi circle described by s = jooto 0 to s = -joo. For this part of the contour, 

s = It R el9 e = 2: ~ 0 ~ _ 2: 
R-+<Xl 2 2 

G(s) H(s) = _-;;--_1_0_-;;--_ 
(ReJ9 + 2)(ReJ9 + 4) 

As R ~ 00, Rel9 » 2 and Rel9 » 4 

10 
G(s) H(s) = R!!~ = It r e-J29 

~- R 2 eJ29 r-+O 

10 
where r = RT and as R ~ 00, r ~ 0 

1t 1t 
As R ~ 00, IG(s) H(s)1 ~ 0 and as e changes from "2 to 0 to - "2 

/G(s) H(s) = -1t to 0 to 1t 

This part of the G(s) H(s) plot is shown in Fig. 7.8(c). 

ImGH 
GH plane 

s = -jao s = ao 
----------~~----------- ReGH 

s = jao r -+ 0 

Fig. 7.8 (c) Nyquist plot corresponding to the Nyquist path of infinite semicircle. 
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3. For the Nyquist path on the jro-axis 

At s = -joo 

At s = jO 

s = jro and ro = -00 to ro = 0, 

10 
G(s) H(s) = (jro+2)(jro+4) 

10 
G(s) H(s) = ( . )( . ) = 0 L+l80 

-Joo -Joo 

10 
G(s) H(s) = (j0 + 2)(j0 + 4) = 1.25LO 

This part of the Nyquist plot is shown in Fig. 7.9 (d). The angle changes from +180 to 0 as ro 
changes from -00 to O. 

ImGH 
GH plane 

ill = 0 

ill =-00 ReGH 

Fig. 7.9 (d) Nyquist plot for s = -jOCI to s = jO 

The complete Nyquist plot for the contour 'ts is shown in Fig. 7.9(e). 

ImGH 

GH plane 

1.25 
ReGH 

10 
Fig. 7.9 (e) Complete Nyquist plot of G(s) H(s) = ( ( 

s+2) s+4) 

The (-1, jO) point is also shown in the Fig. 7.9 (e), It is obvious that the Nyquist plot does not 
encircle the point (-l,jO). Therefore N = 0 Since there are no poles ofG(s) H(s) in the right 
half of s-plane, 

or 

P=O 

N=P-Z 

O=O-Z 

z=o 
Thus there are no zeros of 1 + G(s) H(s), ie., poles ofthe closed loop system in the right half 
of s-plane. Hence the system is stable. 
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Recall that G(s) H(s) is given by, 

m 

rc(s + zJ 
1=1 G(s) H(s) = -'--n-'--- and m :s n. 
rc(s+Zj) 

j=1 

For many practical systems m < n. For such systems the infinite semicircle always maps into 
origin and the Nyquist plot goes round the origin with radius tending to zero. Since we are interested 
in the encirclement of the point (-1, jO), this part of the Nyquist plot is not required for determining 
the stability. Hence the mapping of infinite semicircle can be considered to be mapped on to the origin 
of GH plane. Moreover, since 

G* (jro) H* (jro) = G(-jro) H (-jro) 

the GH plot is symmetrical about the real axis. Hence if GH plot is obtained for values of s on the 
positive imaginary axis, the plot for values of s on the negative imaginary axis will be its mirror image. 
Therefore it is sufficient to plot the GH plot for s = jO to s = jcc. The infinite semi circle maps into 
origin. The plot for s = -joo to s = 0 is the mirror image of its plot for s = jO to s = joo. 

Example 7.2 

Determine the stability of the system 

10 
G(s) H(s) = s(s + I)(s + 4) 

Solution: 

The Nyquist path is shown in Fig. 7.10(a). 

Fig. 7.10 (a) Nyquist path 

I. For points on positive jro axis 

s = jro 

1m s 

0+ < ro < 00 

10 

For 

G(s) H(s) = jro(jro+I)(jro+4) 

s = jO+ 

10 

Res 

G(s) H(s) = jO(j0+1)(jO+4) = 00 L-90 
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For s = joo 

10 
G(s) H(s) = . (. 1)(. 4) = 0 L-270 

Joo Joo + Joo + 
This part of locus of G(s) H(s) corresponds to the curve ABO in Fig. 7.10(b). 

2. The infinite semicircle maps on to the origin. 

3. The locus of G(s) H(s) for s = -joo to s = jO on the negative imaginary axis corresponds to 
curve OBC in Fig. 7.10(b). 

10 
Fig. 7.10 (b) Complete Nyquist plot of G(s) H(s) = ---­

s(s + 1)(s + 4) 

4. For the semicircle s = E ei8 around the pole at the origin, 

10 
G(s) H(s) = , , 

E eJ8 (E eJ8 + 1)(E eJ8 + 4) 

It E ei8 < < 1 and E ei8 < < 4 
E--+O 

10 
G(s) H(s) = It --,s 

E--+O E eJ 

As e varies from - ~ to 0 to ~ 
2 2 

G(s) H(s) varies from 00 L ~ to 00 LO to 00 L-~ 
2 2 

D 

This part of the GH plot corresponds to the infinite semicircle CDA. 

5. To determine stability, we need to know whether the Nyquist plot encircles the (-I,jO) point or 
not. For this, we should determine where the locus crosses the negative real axis ie., the point 
B. Since the point B lies on the locus corresponding to s = jOJ as ro changes from 0+ to 00, let us 
find the value of ro at which the imaginary part of G(s) H(s) is equal to zero. 

10 
G(s) H(s)ls = JQ} = jro(jro + 1)(jro + 4) 
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Let us rationalise this and obtain its real and imaginary parts. 

10(1- jro)( 4 - jro) 
G Oro) H Oro) = jro(1 + ro 2 )(16 + ro2) 

or 

10( 4 - ro2 - j5ro) 

j<O(l + ro2 )(16 + ro2) 

-50 . 10(4-ro2
) 

= (1 + ro2 )(16 + ro2) - J <0(1 + ro2 )(16+ ro2) 

1m G Oro) H Oro) =0 

1 0(4 - ro
2
) == 0 

<0(1 + 0)2 )(16 + ro2) 

oi=4 

0) = ± 2 rad/sec 

At 0) = 2 rad/sec, we have, 

G 02) H U2) = -50 = -0.5 
(1 + 4)(16+ 4) 
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..... (7.9) 

Thus the Nyquist locus crosses the negative real axis at -0.5 for 0) = ±2 rad/sec. Thus the Nyquist 
plot is as shown in Fig. 7.1 0 (c) with the point (-1, jO) also indicated. 

GH-plane 

(-1, jO) ReGH 

Fig. 7.10 (c) Nyquist plot with the critical point (-1, jO) 

It is clear from the Fig. 7.1 O( c), the (-1, jO) point is not encircled by the GH locus. Hence the 
system is stable. 

Example 7.3 

Let us consider an example in which the open loop system has a pole in the right half of s-plane. 
Consider the system 

K 
G(s) H(s) = (s + 2)(s -1) 
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Solution: 

The Nyquist path is as shown in Fig. 7 .11 (a). 

joo 

jill 

o 

-j 00 '--------

Fig. 7.11 (a) Nyquist path. 

1. As s changes on j<o axis, 

At <0 = 0, 

At <0 = 00, 

s = j<o 0<<0<00 

K 
G(s) H(s) = U<o + 2)U<o -1) 

K K 
GGO) H GO) = - - = - L 180 

2 2 

GG )HG ) K 
00 00 = 000 + 2)(j00 -1) 

= 0 /180 

Control Systems 

S-plane 

2. As s moves on infinite semicircle G(s) H(s) maps on to the origin ofGH-plane. 

3. For s = jOJ and -<X) < <0 < 0 the GH plot is mirror image of the plot for 0 < <0 < 00 

The complete plot is as shown in Fig. 7.11(b). 

1m GH 
GH plane 

= -«J 
=00 ReGH 

. K 
Fig. 7.11 (b) NyqUist plot of GH = {s + 2)(s -1) . 
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K 
The Nyquist plot encircles the (-1, jO) point once in anti clockwise direction, if 2 > 1 or K> 2, 

as shown in the Fig. 7.11(c). 

0) = 0 
-K 
-
2 

Fig. 7.11 (c) Nyquist plot for K > 2 

For K > 2, we have 

N= 1 

ImGH GH plane 

ReGH 

Since there is one pole of G(s) H(s) in the right half of s-plane 

P=1 

From 

or 

N=P-Z 

1=I-Z 

z=o 
Therefore there are no closed loop poles in the RHS and hence the system is stable for K > 2. 

If K < 2, the Nyquist plot is shown in Fig. 7.11(d). 

ImGH 
GH plane 

ReGH 

Fig. 7.11 (d) Nyquist plot for K < 2 

Clearly, the Nyquist plot does not encircle (-1, jO) point and hence 

N=O 

P=1 

N=P-Z 
Z=P=1 

There is one zero of the characteristic equation or equivalently, one pole of closed loop system in 
the RHS and therefore, the closed loop system is unstable for K < 2. 
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This examples illustrates the fact that, even if the open loop system is unstable the closed loop 
system may be stable. If some of the open loop poles are in the RHS, for stability the Nyquist plot 
should encircle the origin, in counter clockwise direction, as many times as there are RHP poles of 
the openloop system. 

Example 7.4 

Obtain the range of values of K for which the system with open loop transfer function 

is stable. 

Solution: 

K(s+ 1) 
G(s) H(s) = s2(s+2)(s+4) 

(i) For the Nyquist path shown in Fig. 7.12 (a) and for values of s on section I of the path 

joo 

~SectionII 

Fig. 7.12 (a) Nyquist path for example 7.4 

for 

for 

s = jro 0+ < ro < 00 

K(jro + 1) 
G Oro) H Oro) = Uro)2(jro + 2)Uro + 4) 

K 
G 00+) HOO+) = -(j0)2 

= 00 L-180o 

ro=oo 

" K(joo + 1) 
GOoo)HOoo)=-(j-00~)2-(j~00~+-2-)U~'00-+-4-) 

Kjoo 

(joo i (joo )Uoo) 

= 0 L-270 

Section II 
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The segment of Nyquist plat near s = jO+ and s = joo is shown in Fig. 7.12 (b). 

.. 
ooL-1800 

Fig. 7.12 (b) Part of Nyquist plot at s = jO+ and s = joo 

ImGH 

OL-2700 

GH plane 

ReGH 
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It is clear from the plot shown in Fig. (7.12) (b) that the plot has to cross the negative real axis for 
some value of s = jm. Let us find this point. At this point the imaginary part of GUm) HUm) should be 
zero or the angle of GUm) HUm) = ± 1800 

Equating / GUm) HUm) = - 1800 

m m 
tan- l m - 180 - tan- l - - tan- l - = - 180 

2 4 

m m 
tan- l m = tan- l - + tan- l -

2 4 

Taking tangent of the angles on both sides, we have, 

tan (tan- l 
m) = tan (tan -1 ~ + tan -1 : ) 

m m 
-+-

m=~ 
m2 

1--
8 

Simplifying and solving for m, we have, 

At this value of m, 
m = J2 rad/sec 

1 

K(1 + m2 )2 
IGUm) HUm)1 = - ----'---I --'----I 

m2 (m2 +4)2 (m2 +4)2 

1 

K(1 + 2)2 
-_ 1 1 

2(2 + 4)2 (2 + 16)2 

= -0.0722K 
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Thus the GH plot crosses the negative real axis at -O.0722K for s = j J2 . 
(ii) For selection II 

The GH plot maps on to the origin of GH plane. 

(iii) For selection III 

The GH plot is a mirror image of plot for ro = 0+ to 00. 

(iv) For selection IV 

ase~O 

s = It e ei9 
e ..... O 

1t 1t 
e~--~o~-

2 2 

K(eej9 +1) 
G(s) H(s) = ------'-----­

e 2 ej29(eeJ9 +1)(eej9 +4) 

K 
G(s) H(s) = 4 It e2 ej29 

e ..... O 

as e changes from - 2: ~ 0 ~ 2: on the semicircle around the origin. 
2 2 

G(s) H(s) changes from 001.J!:.. ~ 00 ~ ~ 00 1-1t. 
The complete plot is shown in Fig. 7 .12 (c), 

1 
for 0.0722 K < 1 or K < 0.0722 = 13.85 

and 0.0722 K> 1 
1 

or K> -- = 13.85 
0.0722 

----- --------......., ,...- , 
/'~ /~ ImGH '" '" GH plane / 

/ '\ / 
/0) = jO- ~ /0) =jO-

\ I 

0) = joo 0) = joo 
0) = jO+ 

f 0) = -joo / ReGH 
\ 

\(-1, jO) 0.0722K f \ 0) = jO+ 0.0722 K 
'\ O)=Ji / '\ 0)= J2 
'" / '" '" /' -.., , ,...- -----4-- --------

(i) K < 13.85 (ii) K> 13.85 

Fig. 7.12 (c) Nyquist plot for example 7.4. 

~ 
"-

\ 
\ 
\ 
I 

/ 
/ 

~ 
/' 

,/ 
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From plot (i) of Fig. 7.12 (c), the point (-1, jO) is not encircled by the GH plot and 

hence. N = 0 

since P = 0 

and N=P-Z 
z=o 

Thus the system is stable for K < 13.85 

From plot (ii) of Fig. 7.12 (c), the point (-1, jO) is :ucircled twice in clockwise direction. 

.. N=-2 

and 

P=O 
N=P-Z 
-2=-Z 
Z=2 
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There are two zeros of the characteristic equation in the RHP and hence the system is unstable for 
K> 13.85. The range of values ofK for which the system is stable, is given by, 

0< K < 13.85 

Example 7.5 

Determine the stability of the system 

K(s+2)2 
G(s) H(s) = 3 

S 

Solution: 

Consider the Nyquist Centour shown in Fig. 7.13 (a). 

joo . 
JO> s-plane 

Section II 

(J 

Fig. 7.13 (a) Nyquist path for example 7.5 

The open loop system has a triple pole at the origin and Nyquist path is taken with an indentation 
around the origin with a semi circle to bypass these poles. 

Section I 

s = jc.o c.o ~ 0+ t 0 00 
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K(jro + 2)2 
GUro) H Gro) = (jro)3 

for ro = 0+ 

for ro=oo 

K(joo+ 2i 
GGoo) H Goo) = (joo)3 = 0 L-90 

As the plot goes from - 270° to -90°, it has to cross the negative real axis for some value ro. At this 
value of ro the imaginary part of GUro) HUro) should be zero. 

. . K(jro + 2)2 
GUro)HGro)= (jro)3 

K(-ro 2 +4+4jro) 
_ jro3 

jK(4-ro2 ) 4K 
ro3 - ro2 

Equating the imaginary part to zero, we have 

K( 4- ro 2
) 

----'"---::----'- = 0 
ro3 

or ro2 = 4 

and 

ro = ± 2 rad/sec 

IG Uro) H Uro)1 = - 4 K = - K 
4 

The Nyquist plot for section I of the Nyquist plot is shown in Fig. 7.13 (b). 

GH plane 

-K ReGH 

Fig. 7.13 (b) Nyquist plot for section I of Nyquist path. 
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Section II 

For values of s on this section the plot of GH will map on to the origin. 

Section III 

For this section the plot is mirror image of plot for Section I. 

Section IV 

On this section, 

s = It E el9 
e-+O 

1t 1t 
e~--~o~-

2 2 

K(EeJ9 + 2)2 
G(s) H(s)\s = E ej9 = (E eJa)3 

As E ~o 

4K '39 G(s) H(s) = --,- = cJ:) e-J 
E3 eJ39 

For different values of e, LG(s) H(S)i J'e is tabulated. 
S=Ee 

Table 7.1 

e LG(s) H(s) 

-90 + 270 
-60 + 180 
-30 + 90 

0 0 
30 - 90 

,+ 60 - 180 
90 - 270 

The plot of G(s) H(s) for this section is shown in Fig. 7.13 (c). 

GH plane 

00 L-lSO 00 LO 

ReGH 

00 L-90 

Fig. 7.13 (c) Plot of GH for Section IV. 
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The complete Nyquist plot is shown in Fig. 7.13 (d). 
Q) = 0+ 

GH plane 

ReGH 

K(s + 2)2 
Fig. 7.13 (d) Complete Nyquist plot of G(s) H(s) = 3 

S 

For K > 1, the point (-1, jO) is traversed once in anticlockwise direction and once in clockwise 
direction as can be seen for Fig. 7.13 (d). The net encirclements are zero and since there are no poles 
in the right half of s-plane, the system is stable. 

For K > 1, the point (-1, jO) is traversed twice in clockwise direction and therefore, 

N=-2 

Since 

and 

P=O 

N=P-Z 

-2=0-Z 

Z=2 

The system is unstable. 

Example 7.6 

Comment on the stability of the system. 

Solution: 

K(s + 10)(s + 2) 
G(s) H(s) = (s + O.5)(s - 2) 

The Nyquist path consists of the entire jro axis and the infinite semicircle enclosing the right half of 
s-plane. 

For 

for 

s = jro and ro ~ 0 to 00 

K(jro + 1 O)(jro + 2) 
G(s) H(s) = (jro + 0.5)(jro - 2) 

ro=O 

20k 
G(s) H(s) = - = - 20k = 20KL180 

-1 
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for co =00 

G(s) H(s)= It 00 ..... 0 

=K 

To find the possible crossing of negative real axis, 

1m G (jco) H (jco) = 0 

K(jco + 1 O)(jco + 2)( - jco + 0.5)(-jco - 2) 
1m =0 

(co2 + 0.25)(co2 + 4) 

1m (_co2 + 20 + 12jco)(-o? - 1 + 1.5jco) = 0 

-1.5co2 + 30 - 12 - 12co2 = 0 

IS 4 
co2 = --=-

13.5 3 
co = 1.1547 rad/sec 

Re [G(jco) H(jco )]0) = 11547 = 
K -(20-C0

2
)(1+co

2
)-ISoo

2
1 

(co
2 

+.25)(co
2 

+4) 00=11547 

-SK 

Hence the Nyquist plot crosses the negative real axis at - SK for co = 1.1547 rad/sec. 
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The infinite semicircle of Nyquist path maps into the origin of GH plane. The negative imaginary 
axis maps into a mirror image of the Nyquist plot of the positive jco axis. Hence the complete Nyquist 
plot is shown in Fig. 7.14. 

1.9 K 

ro=6.126 

Fig. 7.14 Complete Nyquist plot of system in example 7.6. 

By equating the real part of G(jco) H(jco) to zero, we can get the crossing of jco-axis also. The plot 
crosses the jco-axis at IG(jco) H(jco)1 = -1.9 K for co = 6.126 rad/sec. This is also indicated in the Fig. 
7.14. From Fig. 7.14 it is clear that if SK > 1 or K > 0.125, (-1, jO) point is encircled once in 
anticlockwise direction and hence 

N= 1 
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Since 

and 

P=1 

N=P-Z 

z=o 
The system is stable for K > 0.125. 

Control Systems 

IfK < 0.125, the (-1, jO) point is encircled once in the clockwise direction and hence N =-1 

Since 

and 

P=1 

N=P-Z 

Z=2 

There are two closed loop poles in the RHP and hence the system is unstable. 

7.3.4 Nyquist Stability Criterion for Systems which are Open Loop Stable 

When the open loop transfer function does not contain any poles in the RHP we have P = 0 and for 
stability N = 0 ie., there should not be any encirclements of (-1, jO) point by the Nyquist plot. The 
Nyquist criterion can be simplified for all such cases and we can avoid drawing the entire Nyquist 
plot. It is sufficient to draw the plot for points on the positive jro axis of s-plane and conclude about 
the stability. In otherwords, the polar plot discussed in section 6.5.2 is sufficient to determine the 
stability of open loop stable control systems. 

Consider the Nyquist plot shown in Fig. 7.l0(c) for the system, 

10 
G(s) H(s) = s(s + 1)(s + 4) 

The system is open loop stable. The Nyquist plot is repeated in Fig. 7.l5(a) for convenience 

GH-plane 

m=2 
(-l,jO) -0.5 ReGH 

10 
Fig. 7.15 (a) Nyquist plot of G(s) H(s) = s(s + 1)(s + 4) 

It is clear that the (-1, jO) point is not encircled by the Nyquist plot and hence the system is stable. 
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Let us now consider the portion of the plot for (j) = 0+ to (j) = 00 and the point (-I, jO) as shown in 
Fig. 7.IS (b). 

ImGH 

B 

(-1.jO) 

to 
Fig. 7.15 (b) Polar plot of the system G(s) H(s) = s(s+I)(s+4) 

Let us define the term, 'enclosed'. 

GH plane 

ReGH 

A point or region is said to be enclosed by a closed path ifit is found to lie to the right of the path 
when the path is traversed in a prescribed direction. For example. shaded regions shown in 
Fig. 7.IS (c) and 7.IS (d) are said to be enclosed by the closed contour. The point A is said to be 
enclosed by the contour 't in Fig. 7.IS (c) but the point B in Fig. 7.IS (d) is not enclosed by 'to The 
point C outside the path in Fig. 7.IS (c) is enclosed. 

Fig. 7.15 (c) Point A enclosed by't. (d) Point B not enclosed but point C enclosed by't. 

The point A in Fig. 7.IS(c) is encircled by the contour 't in clockwise direction, and the point is 
also enclosed by the contour. In Fig. 7.IS(d), the point B is encircled by the contour 't in counter 
clockwise direction but it is not enclosed, whereas the point C is not encircled by the contour 't, but 
it is enclosed by the contour 'to 

Now, coming to the discussion about the stability of open loop systems, it is clear that the Nyquist 
Contour should not encircle the (-I, jO) point, for the system to be stable. In Fig. 7.IS(a) it can be 
seen that for stable system (-I, jO) point should not be enclosed by the Nyquist contour. If we 
consider the plot for (j) = 0 to (j) = 00 as shown in Fig. 7 .IS(b), if the point (-I, jO) is not enclosed by 
the plot, then the system is stable. 

Thus the Nyquist Criterion in the case of open loop stable systems can be stated as follows: 

The Nyquist plot for (j) = 0 to (j) = 00 (ie., the polar plot ofG(s) H(s)) should not enclose the point 
(-1, jO) point when the plot is traversed in the indicated direction from (j) = 0 to (j) = 00. The point 
(-1, jO) is known as the critical point. 
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For an unstable system the point (-1, jO) will be enclosed by the polar plot as shown in Fig. 7.16. 

ImGH 

GH plane 

ReGH 

Fig. 7.16 Nyquist plot for an unstable system. 

The polar plot, which can be obtained by conducting a frequency response test on the given 
system, can be used to determine the stability of the system. 

7.4 Relative Stability 

So far we have considered only the absolute stability of the system. The Nyquist criterion tells us 
whether the system is stable or not by the location of the critical point with respect to the Nyquist 
plot. But often we are interested in knowing how stable the system is, if it is already stable. This 
aspect of stability is known as relative stability of the system. 

Consider a third order system given by 

K 
G(s) H(s) = s(s + l)(s + 4) 

Consider the plot for four different values of K. 

(i) K = 30 

The polar plot of the system and its time response for a unit step input are as shown in 
Fig. 7.17 (a) and (b) respectively. 

ImGH 

1.0 

0) = 0 
-1.5 ReGH 

c(t) 

Fig. 7.17 (a) Polar plot of GH for K = 30 (b) Step response for K = 30 

The polar plot shows that the (-1, jO) point is enclosed and hence the system is unstable. The 
step response of this system increases with time. 
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(ii) K == 20 

The polar plot for this case and its step response are shown in Fig. 7.18(a) and (b) 

ImGH 

c(t) 

ro=oo 1.0 

(-I,jO) ReGH 

Fig. 7.18 (a) Polar plot of with K=20 (d) Step response for K = 20 
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The polar plot passes through the critical point and the step response is purely oscillatory, 
which corresponds to closed loop poles on the jro-axis. Thus, if the polar plot passes through 
(-1. jO), the poles of the closed system lie on the jro axis and the system is marginally or 
limitedly stable. 

(iii) K == 15 

The polar plot and the step response are shown in Fig. 7.19 (a) and (b) respectively. 

ImGH 

1.0 
ro=oo 

ReGH 

~t 

Fig. 7.19 (a) Polar plot of with K = 15 (b) Step response for K = 15 

The system is stable for K == 15 but the point (-1, jO) is very near to the GH plot. The step 
response is highly oscillatory and has large overshoot. 

(iv) K == 10 

The polar plot and the step response are as sketched in Fig. 7.20 (a) and (b) respectively. 

ImGH 

1.0 
ro=oo 

(-l.jO) ReGH c(t) 

~t 

ro=O 

Fig. 7.20 (a) Polar plot of with K = 10 (b) Step response for K = 10 
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The GH plot is far away from the critical point and the step response has less oscillations and low 
overshoot. 

From the above discussion it is clear that the system is more stable if the critical point (-1, jO) is 
far away from the GH plot. Thus, the distance between the critical point and the GH plot can be used 
to quantitatively obtain the relative stability of a system. It is to be noted that the relative stability 
studies are made on open loop stable systems only. 

7.4.1 Measures of Relative Stability: Gain Margin 

We have seen that the nearness of the critical point (-1, jO) to the GH plot can be used to quantize the 
relative stability of a system. One such measure is the "Gain Margin". 

Consider the polar plot shown in Fig. 7.21. The point where the G(s) H(s) plot crosses the 
negative real axis is known as the phase cross over frequency. 

, ImGH 

ReGH 

Fig. 7.21 Polar plot and the phase cross over frequency. 

At Cl) = rop~ the G(s) H(s) plot crosses the negative real axis, i.e, the phase angle changes from 
-180° to + 180 . This frequency is therefore called as phase crossover frequency rope' The magnitude of 
G(s) H(s) at s = jrope is given by OP and is equal to IG Grope) H Grope)l. The gain margin is defined as 

1 1 
Gain Margin (GM) = iG(jropc)H(jrope)i=-;;: ..... (7.10) 

Usually gain margin is specified in terms of decibels, db, as 

1 
Gain margin in db 

1 
=2010g10 -;;: ••••• (7.11) 

If a > 1, the GM is negative, the polar plot encloses the critical point and the system is unstable. 
The system is more and more stable if the phase cross over point P is nearer and nearer to the origin. 
The gain margin is positive for stable systems. 

The magnitude of GGro) HGro) at any frequency ro, in particular at ro = ro e' will increase, as the 
loop gain K is increased. Thus the phase cross over point P moves nearer to the criticaL point, as the 
gain K is increased. For a particular value of K the value IG Grope) H Grope)1 becomes unity and the 
system will be on the verge of instability. 
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Thus the gain margin can also be defined as the amount of increase in the gain that can be 
permitted before the system becomes unstable. 

I 
From eqn. (7.1 0), if the gain is increased by ;-' IG Gco pc) H Gcopc)1 = I and the system will be on 

the verge of instability. Now consider two systems with polar plots as shown in Fig. 7.22. 

ImGH 

(0=00 

ReGH 

Fig. 7.22 Polar plots of two systems with same Gain Margin. 

The two systems have the same cross over point a and hence the two systems have the same gain 
margin. But the system II is nearer to the critical point than the system I at some other frequency and 
therefore the system I is relatively more stable than the system II, even though they both have the 
same gain margin. Hence we need another factor to judge the relative stability of a system and is 
defined as phase margin. 

7.4.2 Phase Margin 

Consider the polar plot shown in Fig. 7.23. Draw a circle with origin as centre and unit radius. 

ImGH 

(0 = 0 

Fig. 7.23 Definition of gain cross over frequency and phase margin. 

The frequency at which the polar plot crosses the unit circle, is known as Gain cross over 
frequency, COgc' For frequencies greater than COgc' the magnitude of G(s) H(s) becomes less than 
unity. If now an additional phase lag of $ = 180 - LG Gcogc) H Gcogc) = 180 - 8 is added without 
changing the magnitude at this frequency, the polar plot of the system will cross (-I, jO) point. If the 
polar plot is rotated by an angle equal to $ in the clockwise direction, the system becomes unstable. 
Therefore, the phase margin can be defined as follows. 

"Phase margin is the amount of phase lag that can be introduced into the system at the gain cross 
over frequency to bring the system to the verge of instability". 
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The phase margin is measured positively from the -180° line in the counter clockwise direction. 
The phase margin is positive for stable systems. 

The value of the phase margin is given by 

PM ~ = LG GOOge) H GoogJ + 180 

where the angle of G GoogJ H GOOge) is measured negatively. 

Gain Margin and phase margin are the two relative stability measures which are usually specified 
as frequency response specifications. These specifications are valid only for open loop stable systems. 
A large value of gain margin or phase margin denotes a highly stable system but usually a very slow 
system. On the other hand a small value of either of these indicates a highly oscillatory system. 
Systems with a gain margin of about 5 to 10 db and a phase margin of around 30 to 40° are considered 
to be reasonably stable systems. 

For many practical systems a good gain margin ensures a good phase margin also. But there may 
be systems with good gain margin but low phase margin and vice vasa as shown in Fig. 7.24 (a) 
and (b). 

ImGH 

........ 
"­

ro=<XJ\ 

ReGH 

Fig. 7.24 (a) System with good gain margin but low phase margin. 

(b) System with good phase margin but poor gain margin 

ImGH 

ReGH 

For a second order system, the polar plot does not cross the negative real axis at all, for any value 
of gain K, as shown in Fig. 7.25. Hence the gain margin of such a system is infinity. 

ImGH 

....-
/ 

I 
ReGH 

Fig. 7.25 Polar plot of second order system for different values of gain 

But the phase margin reduces as the value of K is increased. Thus for a second order system the 
appropriate relative stability measure is the phase margin rather than the gain margin. Hence usually 
phase margin is specified as one of the frequency domain specifications in the design of a control 
system rather than the gain margin. 
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Example 7.7 

Consider a unity feedback system with 

K 
G(s) - -----­

s(0.5s + 1)(0.05s + 1) 

Let us find the gain margin and phase margin for K = 1. 

(a) Gain Margin 

The polar plot ofG(s) is shown in Fig. 7.26. 

ImGH 
-....... 

~ 

ill = 0 
Fig. 7.26 Polar plot of G(s) H(s) 

"­
\ 
\ 
J Re GH 

/ 
/ 
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To obtain the phase cross over frequency we will equate the imaginary part of GUro) to zero. 

1 
GUro) = jro(0.5 jro + 1)(0.05 jm + 1) 

1 

- 0.55ro2 + jro(I - 0.025ro2
) 

1m GUm) = 1 - 0.025 ro2 
= 0 

1 
ro~e = 0.025 = 40 

rope = ± J40 
rope = 6.325 rad/sec. 

At this frequency, the real part of GUro) is 

. 1 
Re GUrope) = - 0.55 x 40 

= - 0.0454 

The GH plot crosses negative real axis at -0.0454 for rope = 6.325 rad/sec. 

Thus a = 0.0454 

1 
and GM = 20 leg -

a 

1 
= 20 log 0.0454 

= 26.86 db 
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The gain can be increased by a factor of ~ = 0.0454 = 22 for the system to remain stable. 

(b) Phase Margin 

Let us first fmd the gain cross over frequency. At this frequency, the gain is unity. 

IGUm) HUm)1 = 1 

1 
----;r======--r===== = 1 
m~1 + O.25m2 ~1 + O.0025m2 

ie., m2 (l + O.25(2) (1 + O.OO25(2) = 1 

Solving for m2 we get 

and 

m2 = 0.91 

mgc = 0.954 rad/sec 

LGUmgJ = - 90 - tan-I 0.5mgc - tan-I 0.05 mgc 

=-118.232° 

Thus phase margin is 

~ = -118.232 + 180 

= 61.768° 

7.4.3 Adjustment of Gain K for Desired Values of Gain and Phase Margins Using 
Polar Plots 

We can also calculate the required gain K to obtain a specified gain margin and phase margin for a 
given system. 

Consider the Ex 7.7 again. 

(a) Let the gain margin desired be 15db. 

1 
GM = 20 log - = 15 

a 
:. a=0.1778 

For K = 1 the intercept was 0.0454. To get an intercept of 0.1778, we increase the gain by a 
facts 0.1778/0.0454. 

:. K = 3.92 

(b) Let the phase margin desired be 45°. Then from definition, 

LGUmgc) + 180 = PM = ~ 

- 90 - tan-I 0.5m - tan-I 0.05m + 180 = 45 

Taking tangent of the angles on both sides, we have, 

0.55m 
----,c- = tan 45 = 1 
1-0.025m2 

0.025m2 + 0.55m - 1 = 0 

mgc = 1.69 rad/sec 
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At this frequency IGGrogc)1 = 1 

K 
--;:====,...-,====== = 1 
1.69Jl + 0.25 x 1.692 Jl + 0.0025 x 1.692 

K= 2.22 

Thus ifK is increased to 2.22, the phase margin will be 45°. 

Note: Gain and phase margins can be adjusted to the desired values analytically, only for 
systems upto second order or third order, if one of the three open loop poles occur at the origin 
and there are no open loop zeros. Otherwise graphical procedure must be used to solve the 
problem. 

7.4.4 Gain Margin and Phase Margin Using Bode Plot 

Bode plot also can be used to determine the gain and phase margins of a system and adjust the gain 
for a given gain margin or phase margin. Let us first consider how phase and gain margins could be 
determined using the Bode plot. 

Example 7.8 

Determine gain and phase margin for the unity feedback system using Bode plot. 

10 
G(s) = s(0.5s + 1)(0.05s + 1) 

Solution: 

The Bode magnitude and phase angle plots are shown in Fig. 7.27. 

When the phase angle curve crosses the -180° line, the frequency is read from the Bode phase 
angle curve. This is phase crossover frequency ropc' At this frequency the magnitude in db is read 
from the magnitude curve. This is the gain margin of the system. If at ropc' the gain is positive, it 
means that IGGro) HGro)1 is greater than 1 and hence the system is unstable. If at the phase cross over 
frequency the gain of the system is zero, the system is oscillatory. Finally if at ropc the gain is negative, 
IGGropc)1 < 1 and hence the system .is stable. 

Similarly, the frequency at which the gain curve crosses 0 db line, is the gain cross over frequency, 
ro c' At this frequency the angle of GGro) HGro) can be read off from the phase angle curve. Than 

g . 

Phase margin ~ = !GGrogc) HGrogc) + 180 

The angle of GGro~c) HGrogc) read above the -180° line gives the phase margin for a stable system. 
If the angle ofGGro~c) HGrogc) lies below the - 180°, the phase margin is taken as negative and the 
system will be unstable. 

In the example 7.8. 

and 

and 

ropc = 6.4 rad/sec 

GM=8db 

rogc = 4 rad/sec 

PM = ~ = 15° 
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40 
~ 

I III I I I I I II 

Uncompensated , 
~ - - - Lag compensated 'r.::-- t--. jill / /11 r--r--

20 
10 ~ G(s) H(s) = s(O.5s + 1)(0.05s + 1) 

'~ 
o 

~(Ogc 

0.1 1.0 ~ 
, 

10.0 100 
I'll 

J r---GM = 8db 

~ 
'~ 

·20 

- \ r--r-.... r--.. -40 
r- \ 

~ 

~ ~~ 
\ 

I'\. 
·60 

"\ 
I'~ ~ 

$pm = 5 ~I\ ~ 

(Ope 

~ 
~ 

I\. 
\ 
~ 

" ..... 1"-

~ 
Fig. 7.27 Bode plot for the system in Ex. 7.8 

The system gain could be adjusted to a desired value using Bode plot. 

Let us consider an example to illustrate this procedure. 

Example 7.9 

I\. 

Determine the gain and phase margin for the unity feedback system with K = 1. 

K 
G(s) s (0.5s + 1)(0.05s + 1) 

'\ 

·9 

1 20" 

1 50" 

/ G 

1 80" 

2 10" 

2 

2 700 
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Determine the value ofK for obtaining (a) gain margin of20 db (b) phase margin of 40° 

Solution: 

With K = 1, the magnitude and phase plots are drawn in Fig. 7.28. 

4 

3 

0 
11III .l I I I 1.1 

0 Uncompensated 

~ 
- - - Lag compensated 

.V~ ~ 
~ 

~ ~ ~ 0 .... 
~ ~ 

~~ 
~ (0 2=1.9 ... ge (0 

00.1 
... J. pe! 

(Oge! = 0.9 ~\ 
10.0 100 
t--- GM2 = 20db(K = 2) 

0 
.~ '~ I I I I I" 
~ 

1\ ~I'-I - GM! = 26db(K = 1) 
0 

~~ I I 
"-0 

~ 
K= 1 

r- r--. 
0 " f' ~ ~I-I--K=2 

2 

-1 

-2 

-3 

-4 

~ .~ 
~ 

1'\ r\ 1\ 
~ m =630 I\. 

"\ ~ 

400 ~ ~ , 

'" 1\ 
(Ogc 

'" '\ I\. '\ 
~ 

I' 
" 
~ 

Fig.7.28 Bode plot for the system in.Ex. 7.e 
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-

1 200 

1 

/ G 

1 sO" 

2 100 

2 

2 700 
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From the figure 

O)gc 0.9 rad/sec. 

~PM 63° 

O)pe 6 rad/sec 

GM 26 db 

(i) To obtain a gain margin of20db, the gain of the system should be increased by (26 - 20) = 6db 
without changing the phase cross over frequency, ie, the gain K must be increased such that 

20 log K = 6 

or K = 1.995 ::: 2 

By making K = 2, the entire gain curve is shifted up by 6db. The phase curve is unaltered. The 
gain curve for K = 2 is shown in Fig. 7.28. 

(ii) To obtain a phase margin of 40°, locate the frequency at which the phase curve has an angle of 
(-180 + 40) = -140°. Find the gain at this frequency. Increase the value of K so that the gain 
curve crosses 0 db line at this frequency. 

From Fig. 7.28, -140° phase angle is obtained at a frequency of 1.9 rad/sec. This should be the 
new gain cross over frequency when the K is increased. 

O)gc (new) = 1.9 rad/sec. 

At this frequency, the gain is read off from the magnitude plot for K = 1. 

Gain at O)gc (new) = 8db 

20 log K = 8 

K = 2.51 

Thus to get a phase margin of 40°, the gain should be increased to 2.51. 

Note: Increasing the gain from K = 1 to K = K) means shifting the entire gain curve up by 20 
log K) db. It is equivalent to shifting the 0 db line down by the same amount.Thus if Bode plot 
for K = 1 is known. the gain margin and phase margin for a given value ofK = K) can be found 
out shifting the 0 db line down by 20 log K db. The new gain cross over frequency and hence 
the new phase margin can be read from the curves. At the phase cross over frequency which 
remains same for K = 1 and K = Kl' the new gain margin can be found. 

7.5 Closed Loop Frequency Response 

Usually we are interested in the time response of a control system. But this is often difficult to obtain. 
On the otherhand frequency response of a system could be obtained more easily. Bode plots and polar 
plots could be used to represent them graphically. In chapter 6, we have shown that the frequency 
response and time response are correlated to one another for a second order system. If time domain 
specifications are given, frequency domain specifications can be easily obtained. The design of a 
controller or compensator is carried out in frequency domain. The frequency response of the 
compensated system can now be translated back to estimate the time response. Let us consider the 
frequency domain specifications of a control system. 
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1. Resonance peak, Mr : This is the maximum of the magnitude of the closed loop frequency 
response. From chapter 6, eqn. (6.8) 

1 
M = ---=== 

r 20~1- 02 

It is seen that, Mr solely depends on the damping factor O. A small value of 0 corresponds to 
large overshoot in time response and large resonance peak in frequency response. 

2. Resonance frequency, OJr : This is the frequency at which resonance peak occurs. 
From eqn. (6.7) 

Resonance frequency is dependent on OJn and 0 and hence it is indicative of frequency of 
oscillations and speed of response of the time response. 

3. Bandwidth, OJd : It is defined as the range of frequencies for which the magnitude of the 
frequency response is more than -3db. The frequency at which the gain is -3db, is known as 
the cut off frequency. Signals with frequencies above this frequency are attenuated. Bandwidth 
is a measure of the ability of the system to reproduce the input signals in the output. It also 
throws light on noise rejection capabilities of the system. More significantly it indicates the rise 
time of time response of the system for a given damping factor. Fast response or small rise 
time is obtained for systems with large bandwidth. 

4. Cutoff rate: The rate of change of magnitude curve of the Bode plot at the cut off frequency 
is known as the cut off rate. This is indicative of the ability of the system to distinguish 
between signal and noise. However, sharp cut off often results in large resonance peak and 
hence less stable system. 

5. Gain margin and phase margin: These are the relative stability measures and are indicative 
of the nearness of the closed loop poles to the jro axis. Usually phase margin, rather than gain 
margin, is specified as one of the frequency domain specifications. The phase margin is directly 
related to the damping factor, 0 for a second order system. Let us derive the relationship 
between phase margin and the damping factor. 

Consider a standard second order system with 

G(s) H(s) = s(s+20ro
n

) 

ro2 

GGro)HGro)= . (. n21: ) 
Jro Jro + uron 

..... (7.12) 
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At the gain cross over frequency cogc' IGUco) HUco)1 = 1 

or co4 + 402 co2 co 2 
- co 4 = 0 gc gc n n 

This is a quadratic in co~c and the solution yields, 

co2 = co 2 ~(404 + 1) _ 202 
gc n 

Phase margin of the system is given by, 

_\ CO gc 
~ = - 90 - tan -- + 180 

pm 20co
n 

tan ~pm = tan (90 - tan -\ ~l 
20con 

_\ COgc __ 20wn 
= cot tan 

20wn Wgc 

_\ 20wn 
~ =tan --pm CO 

gc 

From eqn. (7.13), we have 

COn 

Wgc = ~ J 404 + 1 - 202 

Substituting eqn. (7.16) in eqn. (7. 15),we have, 

~pm ~ tan-I [ ~J 4S' :81 -28'] 

Control Systems 

..... (7.13) 

..... (7.14) 

..... (7.15) 

..... (7.16) 

..... (7.17) 
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Eqn. (7.17) gives a relationship between the phase margin and the damping factor for a second 

order system for (3 < 1. Eqn. (7.17) is plotted for (3 ranging for 0 to 0.8 in Fig. 7.29. 

0.8 

0.6 
1) 

0.4 

0.2 

20 40 60 80 ~pm 

Fig. 7.29 Curve showing the variation of ~pm with 8 for a scond order system. 

As seen from Fig. 7.29, for values of 8 < 0.7 the curve is seen to be linear and hence can be 
approximate by a straight line, 

(3 = O.Ol~pm ..... (7.18) 

Here ~pm is to be taken in degrees. 

Frequency response can be obtained for a given system to estimate the resonant peak and resonance 
frequency which are the two important frequency domain specifications. But this is often difficult. 

Thus graphical techniques are developed to determine ~ and ror from the open loop frequency 
response. 

7.5.1 Constant M Circles 

Consider the polar plot of the open loop transfer function of a unity feedback system. A point on the 
polar plot is given by : 

G(s)ls = JCO = GUro) = x + jy. 

The closed loop frequency response is given by 

Let 

C(jro) G(jro) x + jy 
TUro) = R(jro) = 1+ G(jro) = I + x + jy 

x
2 +/ 

IT Uro)12 - ------::~-=­
- (1 + X)2 + y2 

IT Uro)1 = M 

x2 +y2 
M2 - --~--::­

- (l + X)2 + y2 

M2 (1 + xi + M2 r = x2 + r 

..... (7.19) 
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Rearranging, we have 

x2 (M2 - 1) + 2xM2 + i (M2 - 1) = _M2 

2M2 M2 
X2 + -2- X+i=--M2 1 

M -1 -

Making a perfect square of the terms underlined in eqn. 7.21, we have, 

_M2(M2 -1)+M4 

(M2 _1)2 

Eqn. (7.22) represents a circle with a radius of + and centre at (_ ~2 ,0). 
M -1 M -1 

..... (7.20) 

...... (7.21) 

..... (7.22) 

For various assumed values of M, a family of circles can be drawn which represent the 
eqn. (7.22). These circles are called constant M-circles. 

Properties of M-circles : 

1. For M = 1, the centre of the circle is at 

The radius is also infinity 

Substituting M = 1 in eqn. 7.20, we have 

2x=-1 

1 
or x=- -

2 

( 
_M2 ) 

It -2-,0 ie., (--<X:!, 0). 
M .... tM -1 

1 
This M = I is a straight line parallel to y axis at x = - "2. 

2. For M > 1, centre of the circle is on the negative real axis and as M ~ 00, the centre approaches 
(-1, jO) point aJ'Id the radius approaches zero; ie (-1, jO) point represents a circle for M = '00. 
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M2 
3. For 0 < M < 1, - -2- is positive and hence the centre is on the positive real axis. 

M -1 

4. For M = 0, the centre is at (0, 0) and radius is 0; ie., origin represents the circle for M = 0. 

5. As M is made smaller and smaller than unity, the centre moves from +00 towards the origin on 
the positive real axis. 

The M circles are sketched in Fig. 7.30. 

M = 1 M = 0.7 

Fig. 7.30 Constant M-circles. 

7.5.2 Constant N circles 

Constant N circles are obtained for the points on the open loop polar plot which result in constant 

phase angle for the closed loop system. Consider the phase angle of the closed loop transfer function. 

x+ jy 
LTGro) = e = ----=--

1 + x + jy 

-\ Y _\ Y 
= tan - -tan --

x l+x 

Taking tangent of the angles on both sides of eqn. 7.23, we have 

'l __ y_ 

x l+x = Y 
tan e = y2 x2 + y2 + x 

1 + ----''---
x(1 +x) 

Lettan e =N 

Then 

..... (7.23) 

..... (7.24) 
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Rearranging, we get, 

N (X
2 + x) + Ny - Y = 0 

N (X+~r +N (y- 2~r = ~ + 4~ 

..... (7.25) 

Eqn. (7.25) represents the equation of a family of circles for different values of N with 

centre at ..... (7.26) 

and Radius 
~ 

2N 
..... (7.27) 

These circles are known as constant N circles. 

Properties of N circles: 

1. All the circles pass through the origin (0, 0) and the point (-1, 0) as these points satisfy 

eqn. (7.25) irrespective of value of N. 

1 
2. From eqn. (7.26) we see that the centres of these circles lie on x = - 2" line. 

3. As N ~ 0+ centre tends to ( -i, + 00) and as N ~ 0- centre tends to (-~, -00) and radius 

becomes infinity, ie, x-axis represents the N = 0 line. 

ie., tan8=N=0 

8 = 0 or ± 180 

4. For both positive and negative values ofN, the radius remains the same. For positive N, the 

1 
centre lies on the line x = - 2" and above the x-axis. For negative N, the centre lies on 

1 
x = - 2" and below the x-axis. The locii are symmetrical about x-axis. Positive N corresponds 

to +8 and negative N corresponds to --e. 
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The constant N-circles are shown in Fig. 7.31. Instead of marking the values of N on the various 
circles, value of ~ = tan-IN are marked so that the phase angle can be read from the curves. 

jy 

x 

-200 

Fig.7.31 Constant N circles 

Printed charts, in which M - N locii are plotted, are available. The polar plot of GUm) can be 
drawn on this graph and at any value of m, GUm) point is located. At that point, the magnitude M and 
phase angle ~ of the closed loop transfer function can be read off. The complete closed loop frequency 
response can be plotted in this way for any given G(s). 

From the closed loop frequency response, resonance peak, resonance frequency, bandwidth etc. 
can be easily calculated. 
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IfH(s) =1= 1, ie for non unity feedback systems, we can modify the procedure used for finding the 
closed loop frequency response as discussed below. 

Let 
. C(jro) G(jro) 

TUro) = R (jro) = 1 + G (jro) H (jro) 

G (jro) H (jro) 1 

1 + G (jro) H (jro) H (jro) 

1 
= T1Uro) H (jro) 

Where, 
G1 (jro) 

T1Uro) = 1+G
1
(jro) andG1 Uro)= GUro) HUro) 

We can use M - N circle locii for determining Tl Uro) and TUro) can be obtained by multiplying 

1 
Tl Uro) by H (jro) . 

7.5.3 Nichols Charts 

Though the constant M and N circles plotted on polar coordinates are useful in the design of control 
systems, it is more convenient to plot them on gain phase plane (gain in decibels V s phase in degrees). 
It is easier to construct a Bode plot of G(s) rather than polar plot. At any frequency IGUro)1 and 
LGUro) can be obtained from the Bode plot and transferred to the gain-phase plot. From this it is 
easier to read resonance peak and other frequency domain specifications which may be used in the 
design. Let us consider plotting ofM-circle on to the gain phase plot. 

Consider an M circle for M = Ml as shown in Fig. 7.32 (a). 

dtt 
20 log Gz 

20 log G1 

0 
20logG3 

1 

1 

1 , 
-270~1 

B 

C 

1 
1 

1$ 
I~ -180: 3 -90 

Fig. 7.32 (a) M circle for'M = M1 in GH plane (b) M circle in gain phase plane. 

Consider a point A on this M circle. loin A to the origin. The magnitude of this vector OA in db and 
the phase angle measured negatively from the real axis are transferred to the gain-phase plane as 
shown in Fig. 7.33 (b). This graph contains angles on the x-axis for 0 to -360° on a linear scale. The 
y-axis represents gain in decibels. Similarly points B at C can also be plotted. This gives rise to a 
contour gain phase plot. The constant N locii are also plotted on the same plane in a similar manner. 
The critical point (-l,jO) in GH plane corresponds to 0 db, -180°, point in the gain phase plot. These 
M and N locii were first conceived and plotted by NB Nichols and are called the Nichols charts. 
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The Nichol's chart for 0 to -180° and -180° to -360° are mirror images of each other. Nichols chart 
is shown in Fig. 7.33. 

Loop phase LG in degrees 

Fig. 7.33 Nichol's chart 
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Example 7.10 

Obtain the closed loop frequency response of a unity feedback system whose open loop transfer 
function is given by, 

10 
G(s) = s(0.5s+ 1)(0.05s + 1) 

Use Nichol's chart. 

Solution: 

The Bode plot of the given open loop transfer function is already drawn in Fig. 7.27 .. The magnitude 

of GUro) and angle of GUro) are obtained at different frequencies and tabulatd in Table 7.2. 

Table 7.2 

0) in rad/sec 0.5 1.0 2 3 4 6 8 10 20 

[GQO))[ in db 26 20 14 6.5 2 -5 -10.5 -15 -26 

LGQO)) in deg -105 -120 -140 -156 -165 -180 -189 -195 -219 

These readings are transferred on to the Nichol's chart as shown in Fig. 7.34. The magnitude and 
angle of the closed loop frequency response are read from the Nichol's chart and tabulated in 

Table 7.3. From the magnitude values, the value ofM is calculated and tabulated. 

Table 7.3 

0) in rad/sec 0.5 1 2 3 4 4.3 4.8 52 6 8 10 

I~I in db O.l 0.4 1.4 4 11 14 15 8 2 --8 -14 
I+G 

A:a -3 -5.5 -9 -18 -35 --80 -100 -160 -180 -190 -195 

M 1 1.05 1.17 138 3.55 5.0 5.62 2.5 126 0.4 02 

The value of M and angle of closed loop frequency response are plotted as a function of ro in 

Fig. 7.35. The value of peak resonance Mr, the resonance frequency ror' and the bandwidth are read 
from the graph. 

From the graph, 

Mr= 5.6 

ror = 4.8 rad/sec 

rob = 6.8 rad/sec 
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Loop phase LG in degrees 

Fig. 7.34 Open loop frequency response superposed on Nichol's chart for Ex. 7.10 
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5.5 

5.0 

4.5 

4.0 

3.5 

II~GI 3.0 

9 10 

!t~G -80 

-100 

-120 

-140 

-160 

-180 

-200 

Fig. 7.35 Closed loop frequency response of the system of Ex. 7.10. 
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Problems 

7.1 Draw the complete Nyquist plots for the following open loop transfer functions. If the 
system is unstable, how many poles of the closed loop system are in the right half of s-plane. 

2(s + 0.25) 
(a) G(s) H(s) = s2(s+I)(s+0.5) 

(b) G(s) H(s) = S2 + 50 

2(1 + 0.5s)(s + 1) 
(c) G( s) H( s) = (1 + lOs )(1 - s) 

7.2 Obtain the polar -Plot of the following system. 

K 
G(s) H(s) = (TIS + 1) 

If to this system, poles at origin are added as shown below, sketch the polar plots in each 
case and comment about the behaviour at (0 = 0 and (0 = 00 in each case. 

7.3 Consider again the polar plot of 

K 
G(s) H(s) = -T 1 

IS+ 

If now, non zero real poles are added as shown below sketch the polar plots in each case. 
Comment on their behaviQur at (0 = 0 and (0 = 00 

K 
(a) (1 +sTI)(1+sT2) 

K 
(b) (1 + sTI)(1 + sT2)(1 + sT3 ) 

K 
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7.4 Consider the following polar plot. If now a pole at origin and a pole at s = __ 1 are added, 
T2 

sketch the polar plot. 

1m 

Fig. P7.4 

7.5 Consider the polar plot of, 

K 
G(s) H(s) = -1 T 

+s J 

GH plane 

ill = 0 Re 

Zeros are added as shown below. Sketch the polar plots in each case and comment on the 
effect of adding a zero on the polar plot. 

(a) 
l+ sTa 

K-- Ta <T1 l+sTJ 

(b) 
l+ sTa 

Ta>TJ K--
l+sTJ 

7.6 Sketch the Nyquist plot of, 

10 
G(s) H(s) = (2s + 1) 

A pole at s = 0 and a zero at s = -1 are added to this open loop transfer function. Sketch the 
resulting Nyquist plot. Compare the two plots in tenns of behaviour at co = 0 and co = 00 

7.7 Draw the Nyquist plot for the system, 

K 
G(s) H(s) = s(l + 2s)(1 + 5s) 

Find the critical value ofK for stability. Ifnow a derivative control is used with Gc(s) = (1 + 0.5s), 
will the system become more stable? What is the new value of K for which the system will 
be stable. 
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7.8 Comment on the stability of the systems whose Nyquist plots are shown below. Find the 
number of closed loop poles in the RHP in each case. 

1m 

GH plane 

(a) 

Re 

Open loop poles are all in LHP 

1m 

(b) GH plane 

Re 

One open loop pole in RHP 

7.9 Find the gain margin and phase margin for the following system with transfer function G(s) 
H(s) given by, 

5 

s(1 + O.ls)(1 + 0.2s) 

7.10 Consider the system, 

K 
G(s) H(s) = s(1 + 0.2s)(1 + 0.05s) 

using Nyquist plot 

(a) Find the gain margin and phase margin for K = 1 

(b) What value ofK will result in a gain margin of 15 db 

(c) What value of K will result in a phase margin of 45° 
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7.11 Solve problem 7.10 using Bode plot. 

7.12 Obtain the closed loop frequency response of the system 

10 
G(s) H(s) = s(0.ls+1)(0.05s+1) 

using Nichol's chart. Find the peak resonance Mr, resonance frequency, ror and 
bandwidth rob' 

-jl-



8 Design in Frequency Domain 

8.1 Preliminaries of Design 

A control system is usually required to meet three time response specifications, namely, steady state 
accuracy, damping factor and settling time. The steady state accuracy is specified in terms of the 
permissible steadystate error to a step, velocity or accleration input. Peak overshoot to step input is 
indicative of the damping factor and the speed of response is indicated either by rise time or the 

settling time. Only one of these two quantities have to be specified since both these quantities depend 

on 8 and oon. 

Steady state accuracy is usually satisfied by a proper choice of the error constants Kp' ~ and Ka 
depending on the type ofthe system. A damping factor of about 0.28 to 0.7, corresponding to a peak 
overshoot of 40% to 5% to a step input is usually satisfactory. A standard second order system is 
described by the transfer function, 

Kv 
G(s) - --'--

s('ts + 1) 

where 't is the time constant of the system or plant and ~ is the gain of the amplifier. It may not be 

possible to change the time constant of the plant in a practical situation. For example, the selection of 
an actuator may depend on the type of power supply and space available. It may also be restricted by 
the economic considerations. Generally the speed of a servo motor, which is used as an actuator is 
higher than that required by the load. A gear train may have to be introduced to suit the desired speed. 

All these different components constitute a plant and it may not exactly suit the design specifications. 
Hence we have only one quantity, ~, which can be varied to satisfy one of the specifications, usually 
the steady state error requirement. 
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Thus, from the above discussion, it can be concluded that additional subsystem called 
'Compensator or Controller' has to designed to adjust the parameters of the overall system to satisfy 
the design criterion. This compensator may be used in series with the plant in the forward path 
as shown in Fig. 8.1 (a) or in the feedback path shown in Fig. 8.1 (b). The compensation in the first 
case is known as series or cascade compensation and the later is known as feedback compensation. 
The compensator may be a passive network or an active network. They may be electrical, mechanical, 
hydraulic, preumatic or any other type of devices. We will consider electrical networks as compensators 
in this chapter. 

Compensator Plant 

G(s) 
CCs) 

Fig. 8.1 (a) Series or cascade compensation 
configuration. 

Plant 

Compensator 

Fig. 8.1 (b) Feedback compensation 
configuration. 

The design of a compensator can be carried out in either time domain, using root locus technique 
or in frequency domain using Bode plots or Nichol's charts. The desired performance specifications 
of transient response can be given either in time domain, namely, peak overshoot, settling time, rise 
time etc. or in frequency domain, viz, peak resonance, resonance frequency, Bandwidth, gain margin, 
phase margin etc. The steadystate performance measure is specified in terms of the error constants 
or steadystate error to a step, velocity or accleration inputs. A suitable combination of time domain 
and frequency domain specifications may also be given. Since the time response and frequency 
response of a second order system are well correlated, the performance measures from one domain 
could easily be converted to those in the other domain. 

In this chapter we will discuss the design of compensators for d.c control systems in frequency 
domain using Bode plots. D.C control systems, as discussed in chapter 3, have unmodulated signals 
and compensators must be designed to operate on d.c. input signals. These signals usually have a 
range of frequencies 0 to 20 Hz. A.C control systems, on the other hand, have suppressed carrier 
frequency signals and operate on frequency ranges of 60 to 400 Hz or more. The technique developed 
here will not be suitable in the design of compensators for a.c control systems. 

8.2 A Design Example 

Let us consider the design of a control system whose open loop transfer function is given by, 

K 
G(s) = y 

s(0.5s + 1)(0.05s + 1) 
Let it be required that the steady state error ess' for a velocity input be less then 0.2. This can be 

obtained by a suitable choice of~. Since 

1 
e =­

ss Ky 

1 
~=- =5 

0.2 
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The Bode plot for the system is shown in Fig. 8.2. 

20 
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. Kv 
Fig. 8.2 Bode plot of G(s) = s(0.5s + 1)(0.05s + 1) with Kv = 5. 

From the figure the gain cross over frequency is obtained as cogc = 2.8 rad/sec and the phase 
margin is 27°. 

Let it be required that the phase margin be 40°. Let a compensating zero be added in cascade with 
the forward path transfer function such that it contributes and angle of Qc = 40° - 27° = 13° at the 
gain cross over frequency. 

Thus Gc (s) = (-tS + I) ..... (8.1) 

Select 't such that 

or 

i.e, a zero is added at 

LGc Ucogc) = tan-1 co gCT = 13° 

't = 0.082 
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This adds an angle of 13° at the gain cross over frequency and hence the required phase margin is 
obtained. Adding a zero at s = -12.2 does not change the gain plot appreciably near the gain cross 
over frequency. 

Since an isolated zero is not physically realisable, we must add a pole in addition to the compensating 
zero. This pole is added far away from the jro-axis so that its effect on transient response is negligible. 
The positions of pole and zero of the compensator may be adjusted to get the required phase margin, 
yet not affecting much the gain plot at the gain cross over frequency. The transfer function of the 
compensator is given by, 

1 
s+­s+z G (s)= __ c = __ 't_. 

c s+p 1 ' 
c s+-

u't 

z 
u = _c < 1 and 't > 0 ..... (8.2) 

Pc 

As the zero is nearer to the jro-axis than the pole, it contributes a net positive angle, and hence the 
compensator is termed as a lead compensator. The block diagram of the compensated system is 
given in Fig. 8.3. 

R (s) + "Cs+1 5 C(s 
--

- (X"Cs+1 s(0.5s + 1)(0.055 + 1) 
~ 

Lead compensator Plant 

Fig. 8.3 Block diagram of lead compensated system. 

The required phase margin can also be obtained by changing the gain cross over frequency so that 
the required phase margin could be obtained at this new gain cross over frequency. From Fig. 8.2, 
the required phase margin is obtained at a frequency of rogc = 2 rad/sec. The gain curve can be made 
to pass through 0 db line at rogc = 2 rad/sec by reducing the system gain or reducing~. At rogc = 2 rad/sec 
the gain can be read from the gain curve, which is 5db. If ~ is reduced such that, 

20 log~= 5 

or ~ = 1.78 

the gain curve crosses at 2 rad/sec. 

The transient response specifications are met but the error constant is reduced to l. 78. It does not 
satisfy the steadystate error requirement of ess < 0.2. 

Consider now improving the steady state performance by increasing the type of the system by 
including a compensating pole at the origin. The error constant becomes 00. However, adding a pole 
at the origin makes the uncompensated type-l system to become compensated type-2 system which 
is inherently unstable under closed loop conditions. This is evident from the root locus plot of the 
system as shown in Fig. 8.4. 
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s - plane 

-20 cr 

Fig. 8.4 Root locus plot of compensated system. 

In order to obviate this difficulty, a compensating zero is added very close to the pole at the origin 
and in the left half of the s-plane. This will ensure that the compensated system is of type-2 and the 
effect of the pole on the transient response is nullified by the presence of a zero very near to it. Thus 
the compensator will have a transfer function, 

s + Zc 
G (s)=--

c S 
..... (8.3) 

On physical realisability considerations, the pole at the origin is shifted slightly to the left of the 
origin and the transfer function becomes, 

s+z z 
G (s) = __ c; _c = ~ > I ..... (8.4) 

c s + Pc Pc 
~ > I ensures that the zero is to the left of the pole. Since the pole is nearer to the origin, this 

transfer function introduces negative angle, i.e, lagging angle and hence this type of compensator is 
termed as a lag compensator. 

From the above discussion it is clear that a lead compensator improves the transient performance 
while preserving the steadystate performance and a lag compensator improves the steadystate 
performance while preserving the transient performance. 

If both transient and steadystate performance have to be improved, a lag lead compensator may be 
used. A type-O or type-l system may be compensated by using any the above compensators but a 
type-2 systems which is inherently unstable, can be compensated by using lead compensator only as 
this alone can increase the margin of stability. 

8.3 Realisation of Compensators and their Characteristics 

The three types of compensators, viz, lead, lag and lag-lead compensators can be realised by electrical, 
mechanical. pneumatic, hydrautic and other components. We will discuss the realisation of these 
compt'nsators by electrical RC networks. We will also obtain their frequency response characteristics 
whi :,' are useful in their design. 
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8.3.1 Lead Compensator 

We have seen in section 8.2 that the pole zero configuration of a lead compensator is as given in Fig. 8.5. 

jro 

1 
-Pc=-­

(n 
-z =-­

C 't 

Fig. 8.5 Pole zero configuration of a lead compensator. 

The transfer function of a lead compensator is given by, 

1 
s+-

G (s) = __ 't_. a < 1 't > 0 
c 1" 

s+-
a't 

( 
'ts+1 J 

= a a'ts + 1 

s-plane 

This transfer function can be realised by an RC network shown in Fig. 8.6. 

c 

+ 

Fig. 8.6 RC network realisation of a lead compensator. 

The transfer function of the network is given by, 

V2 (s) = __ R--=2,--,,"-_ 

VI(S) R
I
._1 

R + Cs 
2 1 

R+­
I Cs 

R\ +R2 

Comparing eqn. (8.7) with eqn. (8.6) we have 

't = R\ C 

R2 
0.= <1 

R\ +R2 

+ 

..... (8.5) 

..... (8.6) 

..... (8.7) 

..... (8.8) 

..... (8.9) 
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Since a. < 1, it is a lead compensator. Given the time constant 't and the d.c gain a. of the lead 
network, the three components of RC network, namely, Rl' R2 and C have to be determined. 

Since eqns. (8.8) and (8.9) are the two relations to be used, one component may be chosen 
arbitraritly. This may be decided by the required impedance level of the network. 

To obtain the frequency response of the network, we have, 

. (l + jon) 
GcGco) = a. l' ; a. < 1 + Ja.co't 

..... (8.10) 

For co = 0, 

GcGco) = a. and a. < 1 

which means that the network produces an attenuation of a., and this d.c attenuation has to be 

cancelled by using an amplifier of gain A = J... Thus the compensating network takes the form as 
a. 

shown in Fig. 8.7. 
Amplifier 

+ + 
gain 

R2 1 V2 
A= -

a. 

Fig. 8.7 Phase lead network with amplifier. 

Thus, the sinusoidal transfer function of the lead network is given by 

GGco)= l+
j
co't; 0.<1 ..... (8.11) 

c 1 + ja.co't 

Under steady state conditions, the output of this network leads the input and hence this network is 
known a~ a lead network. 

The Bode plot of eqn. (8.11) is shown in Fig. 8.8. 

logO) 
90~~ ______ +-________ r-____ .-__________ ___ 

Fig. 8.8 Bode plot of lead network. 
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From eqn. (8.11), LGUro) is given by 

~ = tan-l ro. - tan-1 aro. . .... (8.12) 

,j.. ro.(l - a) 
tan 'I' = ---'------''-

1 + aro 2 .2 
or ..... (8.13) 

The angle <l> is a function of ro and it will be a maximum when tan ~ is a maximum with respect 
to ro. 

or 

d (tan~) 

dro 

1 + aro2 .2 _ 2aro2 .2 = 0 

aro2
•

2 = 1 

1 
rom = .ra. 

Eqn. 8.14 can be written as 

:. rom is the geometric mean of the two corner frequencies ..!. and _I_ 

Substituting the value of ro = rom in eqn. 8.13 we have 

1 
ra.(l-a) 

tan ~m = --'--=-=--1-+-1-

From the right angled triangle 

1-0. 
- 2ra. 

2./0. 

• a. 

I-a 

..... (8.14) 
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we have 

Solving for a, we get, 

I-a 
sin ~ =--

m 1 +a 

I-sin ~m 
a= 

1 + sin ~m 

Also, the gain at (j)m is obtained as, 

Substituting rom = ~, we have, 
'tva 
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..... (8.15) 

..... (8.16) 

1 
=101og- ..... (8.17) 

a 
The lead compensator is required to provide the necessary angle at the gain crossover frequency, 

to obtain the required phase margin. Knowing the value of required angle, rpm' to be provided by the 
network, a parameter can be obtained using eqn. 8.17. The value of a required to get a maximum 
phase lead, rpm' is tabulated in Table 8.1. 

Table 8.1 

~m a 

0 1 

20 0.49 

40 0.217 

60 0.072 

80 0.0076 

From the table it can be seen that for obtaining larger phase angles, a has to be reduced to very 
low value. For very low values of a, the pole of the lead network is located for away from the 
jro-axis and from the Bode magnitude diagram it can be seen that the network has a large gain of 

20 log ~ db at high frequencies. Thus the high frequency noise signals are amplified and signal to 
a 

noise ratio becomes very poor. Hence it is not desirable to have low values of a. A value of a = 0.1 
is considered to be suitable. When large phase angles are desired, two lead networks in cascade may 
be used. 
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8.3.2 Lag Compensator 

The transfer function of a lag compensator is given by, 

1 s+-
't 

Ge(s) = S + _1 ,p > 1, 't> 0 
P't 

Control Systems 

..... (8.18) 

P> 1 ensures that the pole is to the right of the zero. The pole zero configuration is given in Fig. 8.9. 

jco 

s-plane 

1 (J 

-z = -- -p =--
C 't C ~'t 

Fig. 8.9 Pole zero pattern of a lag compensator. 

The RC network realisation is shown in Fig. 8.10. 

0 Wv 

fR, + R, 

V, 

0 T C 

Fig. 8.10 An RC lag network. 
1 

0 
+ 

V2 

0 

R+-
2 Cs R2Cs+l 

'ts + 1 
---

P'ts + 1 

1 
R, +R2 +­

Cs 

R, +R2 
where 't = R2C and P = > 1 

R2 
The sinusoidal transfer function is given by 

G Gro) = j'tro + 1 
e jp'tro + 1 

..... (8.19) 

..... (8.20) 

..... (8.21) 

..... (8.22) 

..... (8.23) 

The d.c gain of this network is unity and hence no d.c amplifier is required, as in the case ofa lead 
network. 
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The Bode diagram is given in Fig. 8.11. 

logco~ 

-20 log ~ 

OOI--------~-----r----,_-------------

-45°1 ________ ~~--_+--~~-------------

-900, ________ ~ ____ _L~1--~-------------
~I co =- ~logco 
13 m tfci 

Fig.8.11 Bode plot of lag network. t 

Under steady state conditions the output of the network lags the input and therefore this network 
is known as a lag network. The maximum phase lag ~m is again obtained from eqn. (8.15) and 
frequency at which it occurs. from eqn. (8.14). replacing a by p. At high frequencies, the network 
produces an attenuation of 20 log p and hence signal to noise ratio is improved by this network. 

8.3.3 Lag-Lead Compensator 

The general form of the transfer function of lag lead compensator is, 

1 
s+-

1:1 
Ge(s) = --1'-

s+­
P1:1 

lag 

P> 1, a < 1; 1: 1, 1:2 > 0 

lead 

..... (8.24) 

Transfer function given by eqn. (8.24) can be realised by an RC network as shown in Fig. 8.12. 

+ 

T e2 
O~-----------------L-------~O 

Fig. 8.12 Lag lead RC network. 

The transfer function of this network can be derived as, 

..... (8.25) 
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Comparing eqns. (8.25) and (8.24), we have 

1 1 
'I = -- ; '2 = --

RICI R2C2 

RI R2 C1 C2 = (l~ 'I '2 
1 1 1 1 1 

and -- + -- + -- = -+-
RICI R 2C2 R 2CI ~'l (l'2 

From eqns. (8.26) and (8.27) we have 

(l~ = 1 

Control Systems 

..... (8.26) 

..... (8.27) 

..... (8.28) 

..... (8.29) 

This means that (l and ~ cannot be chosen independently. In view of eqn. (8.29) we can write 
Ge(s) as 

G(s)~ [s+~)[s+~) ;~>l 
c (s+_1) (s+-.!) 

~'l '2 
where 'I = RI C1 '2 = ~ C2 

1 1 1 1 ~ 
and -- + -- + -- = -+-

RICI R 2C2 R 2CI ~'l '2 

The pole zero configuration of a lag lead network is given in Fig. 8.13. 

jro 
s-plane 

~ 

'2 ~'l 
Fig. 8.13 Pole zero configuration of lag lead network. 

The Bode plot is shown in Fig. 8.'14. 

1 
IGcGro)1 in db t 

-~----~~--+----~+--~------

-20 db/dec 20 db/dec 

45°1-------+-----+-----+::::_~---

-900 
'--____ ~ _ ___J. ____ ...J....._~:----

~1:1 

Fig. 8.14 Bode plot of Lag-lead network 

..... (8.30) 

..... (8.31 ) 

..... (8.32) 
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8.4 Cascade Compensation in Frequency Domain Using Bode Plots 

In order to design a compensator using Bode plot, the specifications are to be given in frequency 
domain. If specifications are given in time domain, they can be easily converted into frequency 
domain using time and frequency domain correlations discussed in chapter 6. The frequency domain 
specifications are usually given by : 

1. Phase margin ~m or peak resonance Mr which indicates relative stability. 

2. Bandwidth rob or resonance frequency ror which indicates rise time or settling time 

3. Error constants which indicates steadystate errors. 

The design is carried out in the frequency domain using Bode plots. The time response of the 
compensated system must be obtained to check the time response specifications. This is necessary 
because the time and frequency domain specifications are correlated under the assumption that the 
compensated system is of second order, or it has a pair of dominant closed loop poles. Based on the 
time response characteristics, the design may be altered sustably. The frequency domain method of 
design is easy to apply but the time response specifications cannot be directly controlled in this 
method. 

8.4.1 Design of Lead Compensator 

The procedure for the design of a lead compensator is developed in the following. 

1. The system gain K is adjusted to satisfy the steady state error criterion, as specified by the 
appropriate error constants ~, ~ or Ka or the steady state error ess ' 

2. The Bode plot of the system with the desired K is plotted. The phase margin of the uncompensated 
system is read from the graph (~I)' If this is satisfactory no compensator is necessary. If the 
phase margin falls short of the desired phase margin, additional phase lead ~m' must be provided 
by a lead compensator at the gain cross over frequency. 

3. Since maximum phase lead, $m' of a RC lead network occurs at a frequency rom' which is the 
geometric mean of the two comer frequencies ro I and ro 2 ofthe network, it is desirable to have 
this maximum phase lead occur at the gain cross over frequency of the uncompensated system. 
Thus the two comer frequencies of the lead compensator must be located on either side of the 
gain crossover frequency ro gel . But the gain curve of the compensator also effects the gain 
curve of the uncompensated system. It lifts up the gain curve around the gain cross over 
frequency and hence the compensated gain curve crosses 0 db line at a slightly higher frequency 
roge2. This is shown in Fig. 8.15 for a type one, second order system. 

K 
G(s) = v 

s('ts + 1) 

In Fig. 8.15 the frequency, rom' at which maximum phase lead occurs in a phase lead network, is 
made to coincide with the gain cross over frequency, rogel' of the uncompensated system. The effect 
of this is two fold. 

1. The gain cross over frequency moves to roge2 which is higher than rogel . Hence the phase 
margin obtained after the compensation, is not equal to $1 + $m (Fig. 8.15) as desired. 
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2. The new phase margin has to be read at the new gain cross over frequency, (Oge2' and is equal 
to ~2 + ~3 as shown in Fig. 8.15. Obviously ~2 < ~l' and ~3 < ~m and hence the phase margin 
obtained will fall short of the desired value. 

-40db/dec -20db/dec 

-- Uncompensated 
system 

- - - - Compensated 
system 

log co 

IGeGID)1 
in db 

-40db/dec 

-900 
r ~---------------;----+---~-

/GeGco) 
log co 

---_ .. 
-1800~--------------~~~~~==--~~~ 

90 ~--------------~--~-----------

/GeGco) 

Or-----~--------~-----------------------

Fig. 8.15 Bode plots for (a) un compensated system (b) compensated system (c) lead network. 

3. It is clear from the above discussion that if (Om oflead network is made to coincide with (Ogel' 

desired phase margin is not obtained for the compensated network. Thus it is desirable to make 
(Om coincide with (Oge2 so that maximum phase lead occurs at the new gain crossover frequency. 
But this new gain cross over frequency is not known before hand. 

4. The above difficulty is overcome as follows. The phase lead network provides a gain of 

1 
10 log - at (Om as given by eqn. (8.17). If (Om is to be made to coincide with the new gain cross 

a 
over frequency (Oge2' (Oge2 must be chosen such that the uncompensated system has a gain of 

-10 log ~ at this frequency. Thus if (Om = (Ogc2' the gain provided by the lead network will be 
a 

10 log ~ and hence the gain curve of the uncompensated system will be lifted up by 10 log ~ 
a a 

at this frequency and hence the gain crossover of compensated system occurs at this frequency 

as shown in Fig. 8.16. <:! The parameter of the lead network can be calculated by knowing the 
required phase lead to be provided by the network using eqn. (8.16). 
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--l _______ ----:-:-~'_,"__>tCOg:.2 _____ 10 log! 
CO gel .--:-, a 

'- '- phase lead network 
'-

Fig. 8.16 Locating com at co9C2 where IG Ucogc2)1 = -10 log ~. 

5. The maximum phase angle to be provided by the lead network is obtained as follows: 

At the gain crossover frequency of the uncompensated system. the system has a phase margin 
of <PI which is less than the desired phase margin <Pd' Hence an additional phase lead of <Pd - <PI 
has to be provided by the lead network. But the system will not be providing a phase lead of <PI 
after compensation because the gain crossover is going to shift to a new higher value co$e2' at 
which the phase angle provided by the system will be <P2' as shown in Fig. 8.15, which IS less 
than <p\. Also co e2' and hence <P2 is not known to start with. In order to compensate this 
unknown shortfa'l, an additional phase angle <Pe ranging from 5 to 20° is to be provided. Thus 
the maximum phase lead <Pm to be provided by the lead network is taken to be, 

<Pm = <Pd - <PI + <Pe ..... (8.33) 

<Pe may be around 5° if the slope of the uncompensated system at cogcl is -40 db/dec or less 
and may go to 15° to 20° if it is -60 db/dec. 

6. The RC phase lead network is designed as follows 

Maximum phase lead to be provided is given by, 

<Pm = <Pd - <PI + <Pe 

1-sin<pm 
Then a is calculated from, a = ',h 

1 + Stn't'm 

We have to make com = coge2' where ())ge2 is the frequency at which, 

. 1 IG G ())ge2)1 = -10 log - . 
a 

Knowing a, we can locate ())ge2 from the magnitude plot. 

From these values, the corner frequencies of lead network are obtained as. 

1 
co =-=()) ra 

I "t m 
..... (8.34) 

..... (8.35) 
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The transfer function of the lead network is 

1 
s+­

't Ge(s) = --1-
s+­

a't 

Control Systems 

7. It is observed that the gain cross over frequency is incre!lsed after compensation. Gain cross 
over frequency can be taken as a measure of the bandwidth of the system. Since the bandwidth 
is increased by the lead compensation, speed of response is improved. The actual bandwidth 
can be obtained by transferring the data from Bode plot to Nichol's chart. 

8. Since the gain at higher frequencies is increased by 20 log ~, the noise frequencies' are 
a 

amplified and hence the signal to noise ratio deteorates. 

9. The values ofRI , R2 and C can be calculated using, 

't=RIC ..... (8.36) . 

..... (8.37) 

Since one of the three elements R I , R2 and C can be chosen arbitrarily, as there are only two 
equations, impedance level required or the cost of the compensator may be used to select this 
element. 

The design procedure may be summarised as follows. 

(i) Select the gain K to satisfy steadystate error requirements. 

(ii) Using this value of K draw the Bode magnitude and phase plots of the uncompensated 
system. Obtain the phase margin of the uncompensated system. Let this be ~I, 

(iii) Determine the phase lead required. 

~rn = ~d - ~I + ~E 
where 

~ d - Desired phase margin 

~I - Available phase margin 

<P E - Additional phase angle required to compensate the reduction in phase angle due to 
increase in gain crossover frequency after compensation. 

(iv) Determine a of the RC network as 

I-sin <Pm a = -----'-'''-
1+ sin <Pm 

If ~rn required is more than 60° it is recommended to use two RC networks in cascade 

each providing an angle of <P; . 



Design of Compensators 

(v) Find the gain of the phase lead network at rom' which is 10 log ~. 
a 
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Locate the frequency at which the gain of the uncompensated system is -10 log ~ . Let 
a 

this frequency be roge2. Make roge2 = rom' Read the phase margin ~2' provided by the 
system at this frequency rom' If ~1 - ~2 is > ~E' increase ~E and recalculate ~m' a and rom 

until ~1 - ~2 ~ ~E' 

(vi) Compute the two comer frequencies of the lead network from eqn.s (8.34), (8.35) 

1 
ro 1 = ~ = rom ra. 

1 rom 
ro2 = a. = ra. 

The transfer function of lead network 

1 
s+-

Ge(s) = --~-
s+­

a. 
(vii) Draw the Bode plot of the compensated system and check the phase margin. If it falls 

short of the desired phase margin increase ~E and redesign. 

(viii) Obtain the elements of RC phase lead network. Using egs (8.36) and (8.37). 

Let us now illustrate the procedure by some examples. 

Example 8.1 

Consider a system 

The specifications are : 

Ky 
G(s)- --

e s(s + 1) 

ess for a velocity input should be less than 0.1. 

Phase margin should be greater than 40°. 

Solution: 

1. Choose ~ such that ess < 0.1 

Since 
1 

e =­
ss Ky 

1 1 
~= - = - = 10 

ess 0.1 
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2. The Bode plot is drawn for ~ = 10 

-20db/dec 

30 

20 

IGI in db 

o 
0.1 

I' 
"'~ 

1\ 
1'\ l ..... 

1 O>gc
1
=32i\ 

O>gC
2 
=4 2 

l.iI ......... 4.8 db 

~~ 10 

~ , -40db/dec 

l~ V 

r=-=:..: ~ .... 1-- 1\ 1', 
i"- l"-

-20 

i' -- ~I-- 1\ 
r-..... 

43° 

"'t'--lU '" .... r-
~1=18°ITI 

I t 
Fig. 8.17 Design of phase lead compensator for Ex. 8.1. 

The gain crossover frequency is, 

O)gcl = ~.2 rad/sec 

and phase margin of uncompensated system is, 

~l = 18° 

I' 
I' 

Control Systems 

~-- Uncompensated 
---c ompensated 

100 

-90 

-120 

L GUm) 

-150 

r - -180 

3. Since the desired phase margin is ~d = 40°, the phase lead to be provided by the phase lead 
network is 

4. 

~m = ~d - ~l + ~E 
= 40 - 18 + 8 

a 

= 30° 

I-sin ~m 

1 +sin~m 

1- sin 30 

1 + sin 30 

1 

3 

(~E is assumed to be 8°) 
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5. Gain of the phase lead network at OOm is, 

1 
IGc UOOm)1 = 10 log -

u 
= 10 log 3 

= 4.77 db 

Frequency at which IG UOOgc2)1 = - 4.77 db is read from the magnitude plot of GUoo) 

OOgc2 = OOm = 4.2 rad/sec 

299 

At OOm = 4.2 rad/sec, the phase margin provided by the system, <b is 14°. Hence <1>1 - <1>2 = 
18.14 = 4° which is less than <I> E = 8. If desired, <I> E can be reduced to 5° or 6°. 

6. The corner frequencies of the lead networks are: 

1 
00 I = - = 00 .[c;. 

't m 

4.2 

J3 
= 2.425 rad/sec 

1 OOm 
002 = u't = .[c;. 

= 4.2 J3 
= 7.27 rad/sec 

.. The transfer function of the lead compensator is, 

s + 2.425 
Gc(s)= s+7.27 

1 0.412s + 1 
3 0.1376s + 1 

7. The Bode plot for the compensated system is drawn. From Fig. (8.17) the phase margin is 

,j, = 43° 't'pm 

This satisfies the design specification. 

8. The RC phase lead network is designed with, 

RIC = 't = 0.412 

Assuming 

RI =412Kn 

R2 = 206 Kn 

1 

3 

... 
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The lead network is shown in Fig. 8.18. 

C = IIlF 
Amplifier 

206 Kn A=3 

. Fig. 8.18 RC phase lead network for Ex. 8.1. 

An amplifier with a gain of ~ = 3 is used to nUllify the d.c attenuation introduced by the lead 
a 

network. 

The open loop transfer function of the compensated system is 

G (s) G(s) = 10(0.412s+1) 
c s(0.1376s + l)(s + 1) 

Example 8.2 

Let the system to be compensated be, 

K 
G(s) - -----­

s(1 + O.ls)(1 + 0.25s) 

The specifications to .be· met are 

T< = 10 and .I. > 40° ~~ 'l'pm-

Solution: 

1. Since G(s) is in time constant form 

K=~= 10 

2. The Bode plot for this value ofK is drawn. 

The gain crossover frequency (Ogcl = 6.4 rad/sec. 

The phase margin of the system is ~pm = ~l = 0°. 

This indicates that the system is highly oscillatory. 

3. Since the desired phase margin ~d = 40°. 

~m = ~d - ~l + ~E 
= 40 - 0 + 15° 

= 55° 

The phase curve of the system has a steep slope around the gain cross over frequency as seen 
from Fig. 8.18. Hence ~E is chosen to be 15°. 
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30 

20 

IGI in db 

...... r--. 
r--. 

-20db/dec 

I 
I"" 40db/dec 

i'.. rogc =10.5 r. ~~ /2 

10 

o 
O. 1 

.. 
-20 

--r-

1 

-I- --
h~ 

~ 

" 

1\ 
rogcj=6.4 

- , ~, , 
, ~ 

1\ 
"-
~ 

<h=6' 

Fig. 8.19 Bode plot or the Ex. 8.2. 

4. a. 
= I-sin~m 

1- sin55 

1 + sin55 
= 0.0994 :: 0.1 

5. Gain of the phase lead network at rom is 

1!J'. .., 

1\ 

\ \ 

\ 1\ 

~\=~~ 1"'\1 

T, ,~ 
~2=-26° 

" 
\ 

~ 
r--

IGc Grom)1 = 10 log _1 = 10db 
0.1 

100 

-60db/dec 

~ 
I' 

I"-t'- --
to-

-
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___ Uncompensated 
- - - Compensated 

-90 

-120 
LGUro) 

-150 

-180 

-210 

-240 

-
r- -270 

Frequency at which the magnitude of the uncompensated system is -10 db is read from the 
graph as rogc2 = rom = 10 rad/sec. 

At rogc2 = 10 rad/sec, the phase margin ~2' provided by the uncompe!lSated system, from the 
grapfi, is -23°. 

~l - ~2 = 0 - (-23) 

= 23 

> ~E 
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Hence ~E = 15 is not sufficient and hence a higher value has to be chosen. This is because the 
uncompensated system is oscillatory and the phase angle is changing steeply around the gain 
cross over frequency. 

Since ~ E chosen is already high, let us design for a higher value of ~m = 66° and design two 
phase lead networks each providing 33°. 

1- sin33 
a=---

1+sin33 
Total magnitude provided by the two phase lead networks at rom is, 

1 
2 (10 log - ) = 10.45 db. 

a 
From the graph magnitude of -10.45 db for uncompensated system occurs at ro = rogc2 = 10.5 
rad/sec. The phase margin ~2 at this frequency is -26°. Hence the total phase margin obtained 
is equal to (66 - 26) = 40° which satisfies the specifications. Thus, we will have two identical 
sections of phase lead networks each having the following parameters. 

a = 0.3 

~m = 33° 

rom = 10.5 rad/sec 

6. Each phase lead network has the following corner frequencies 

ro =.!.=ro ra 
J t m 

= 10.5 J03 
= 5.75 rad/sec 

1 rom 
ro2 = at = ra 

= 19.17 rad/sec 

The transfer function of each of the lead compensators, is 

s + 5.75 
GcJ(s)= s+19.17 

0.174s + 1 
= 0.3 0.052s + 1 

7. The Bode plot for the compensated system is drawn, from which the phase margin is 
approximately 40°. This satisfies the design specifications. 

8. The single section of phase lead network is designed as follows. 

Choose C = 1 f.LF' 

1 
RJC= - =5.75 

t 

5.75 
R J = ---::-6 = 5.75 MQ 

1x10-
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R2 
(l = ----=-- = 0.3 

R J +R2 
R2 = 2.46 MO 
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The complete phase lead network is as shown in Fig. 8.20. The amplifier should provide a gain 

of (_1_)2 and is normally placed in between the two phase It:ad networks. 
0.3 

11lF 

1 
A=--= 1Ll1 

(0.3)2 

Fig. 8.20 Phase lead network for Ex. 8.2. 

The open loop transfer function of the compensated system is 

G(s = (0.174S+1)2 10 
) 0.052s + 1 s(1 + O.ls)(1 + 0.25s) 

The main effects of phase lead compensation may be summarised as follows: 

~requen~response 

1. Phase lead is provided around the resonant frequency. 

2. For a specified gain constant K, the slope of the magnitude curve is reduced at the gain cross 
over frequency. The relative stability is therefore improved. The resonance peak is reduced. 

3. The gain cross over frequency and hence the bandwidth of the system is increased. 

Time response 

1. Overshoot to step input is reduced. 

2. The rise time is small. 

When large phase leads are required, two or more lead networks are used so that (l is greater 
than 0.1 for each network and gain crossover frequency is not unduly increased. Inherently 
unstable systems, like type 2 systems can be effectively compensated using phase lead networks. 

For systems with low damping ratios, the phase shift may decrease rapidly near the gain cross 
over frequency and phase lead compensation may be ineffective. This rapid change in phase 
angle may be due to, 

(a) Two simple corner frequencies placed close to each other near the gain cross over 
frequency. 

(b) A double pole placed near the gain cross over frequency. 
(c) A complex conjugate pole near the gain cross over frequency. 

In these cases also two or more phase lead networks may be used to achieve desired specifications. 
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8.4.2 Design of Lag Compensator 

The procedure for design of a lag compensator is developed in the following: 

1. The gain constant is set as per the steadystate error requirements. 

2. Bode plot is drawn. If the phase margin obtained is adequate no other compensation is required. 
If phase margin is not adequate, locate a frequency, roge2 at which the desired phase margin is 
available. 

3. The gain of the uncompensated system at this frequency is measured. This gain will be positive 
for type 1 or type 0 systems. 

4. The attenuation characteristic of phase lag network at high frequencies is used to reduce the 
gain of the uncompensated system to zero at roge2, so that this frequency becomes the gain 
crossover frequency of the compensated system, as shown in Fig. 8.21. The phase lag introduced 
by the lag network is detrimental to the system. Hence the frequency at which maximum phase 
lag occurs for the phase lag network must be located for away from the gain crossover 
frequency. 

~--IGUro)1 I" - _ -20db/dec Uncompensated 

in db 1 ~- f~ system 

+ 
2 _ ro

gc2 
.... ro

gcI 

- -; ........ 1 ....... - ....... -20 ~o~ ....... ,,~, ,,---40db/d~ ~Phase I::~:twork 
1 cUro)11 _J':"- __ ......... _,, ___ _ 

---~----t---~~-~---
/ GcUro) -900 Phase lag added 
- 1 by lag network Compensated 

1 system 

-900 1"'---__ 

/GUro) 1 
1 ~d 

-1800 

-~----
1 

Fig. 8.21 Bode plots of GUro) and GcUro). 

5. The comer frequencies of the lag network are located far to the left of the new gain cross over 
frequency, roge2, so that the phase lag provided by the lag network does not appreciably affect 
the phase of the system at this frequency. However a small negative angle will be added to the 
system phase at roge2, as shown in Fig. 8.21. To compensate this, the phase margin to be 
provided is taken to be slightly higher than the desired phase margin. Thus the phase margin is 
taken to be 

~m = ~d + ~E 
~E is taken tcrbe in the range of 5° to 15°. If the comer frequencies of lag network are closer 
to the new gain cross over frequency, higher value of ~E is chosen. The upper comer frequency 
ro2 of the lag network is placed, usually, one octave to 1 decade below the new gain cross over 
frequency roge2. 
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The design steps are summerised as follows : 

1. Choose the gain K to satisfy steady state error specifications. 

2. Draw the Bode plot with this value of K. If the phase margin of this system is inadequate, 
design a lag compensator. 

3. The phase margin to be provided is given by, 

..... (8.38) 

where cl>E ranges between SO to ISo. 

4. Locate the frequency IDgc2 at which the phase margin cI> is available on the gain plot of G(s). 
Find the mlignitude of G(s) at this frequency. 

S. The attenuation to' be provided by the lag network is given by, 

. 20 log ~ = IG GIDgc2)ldb 

Find the value of ~ from this equation. 

..... (8.39) 

IDgc2 
6. The upper corner frequency, ID2, of the lag compensator is chosen to be between -- to 

2 

IDgc2 • Thus 
10 

1 
ID =-

2 't 

7. With't and ~ known, the phase lag network can be designed. The transfer function of the 

Lag network is, 

G (s) = 'ts + 1 
c ~'ts + 1 

8. Draw the Bode plot of the compensated system to check the specifications. 

If necessary, choose a different value of't and redesign to satisfy the specifications. 

Example 8.3 

Design a lag compensator for the unity feedback system with, 

K 
G(s) = -­

s(s + 2) 

to satisfy the following specifications, 

~= 10 

"" > 32° 'l'pm-
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Solution: 

K 
G(s) = ---

2s(0.5s + 1) 
1. 

since ~= 10 

K 
2=~ 

or K=2~=20 

2. Bode plot is drawn for K = 20 

From the graph, gain cross over frequency O)gcl = 4.4 rad/sec 

Phase margin = 25° 

Control Systems 

Phase margin falls short of the desired phase margin. Hence a lag compensator is designed. 

3. Phase margin to be provided is 

<Ppm = <Pd + <Pe 
= 32 + 8° 

= 40° 

4. Frequency at which the phase margin of 40° is available is, O)gc2 = 2.5 rad/sec. 

5. The gain of the system at this frequency is 11 db. 

:. The attenuation to be provided by the lag network is -11 db. 

20 log [3 = 11 

[3 = 3.55 

6. The upper comer frequency is chosen to be, 

7. 

O)gc2 2.5 
0)2 = -- = - - 0.4 rad/sec 

0) = -
2 • 

1 

6 6-

• = 0.4 = 2.5 sec 

1 0.4 
0) = -=-- = 0.11 rad/sec 

1 [3. 3.55 

The transfer function of the lag network is, 

2.5s + 1 
Gc(s) = 9.1s+1 
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8. Bode plot of the compensated system is drawn as shown in Fig. 8.22. 
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Fig. 8.22 Design of lag compensator for Ex. 8.3. 

The gain crossover frequency is 2.4 rad/sec 

The phase margin is 32°. 

Since the specifications are satisfied, the lag compensation is adequate. 

't = R2 C = 2.5 
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If c = 1 IlF 

R2 = 2.5 MO 

and 
R +R 

1 2 = 13 = 3.55 
R2 

Rl = 6.375 MO. 

The lag network is 

6.375 MQ 

O~--~\NV~----Jtr--2.-5-M-Q---O 

T Ij.lF 
O~------------~------~O 

Fig. 8.23 RC lag network for Ex 8.3. 

Example 8.4 

Design a phase lag compensator for the system 

K 
G(s) = -------

s(0.5s + 1)(0.2s + 1) 

with the following specifications 

~~5 

The damping factor, 0 = 0.4 

Solution: 
• 

Control Systems 

From eqn. (6.17) the frequency domain specification ~pm corresponding to 0 = 0.4 is, 

'" = '" = 43° 'I'd 't'pm 

1. The steady state error requirement is met by, 

K=~=5 

2. The Bode plot is drawn with K = 5 in Fig. 8.24. 
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Fig. 8.24 Design of a lag compensator for Ex. 8.4. 

From the graph O)gcl == 3.2 rad/sec 

J. == 00 'f'pm 
3. Phase margin to be provided is, 

$pm == $d + $E 
==43+15==58° 

$E is chosen to be 15° because the gain crossover frequency is very small and the corner 
frequencies oflag network will be still smaller. A lag network at very low frequencies requires 
a large value of capacitor and the cost of the compensator will increase. 
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4. A phase margin of 58° occurs at (j)ge2 = 0.78 rad/sec. 

5. The gain of the system at this frequency is 16 db. 

:. Attenuation to be provided by the lag network is - 16 db. 

:. 20 log ~ = 16 

~ = 6.3 

6. The upper comer frequency is chosen to be, 

COgc2 0.78 
(j) = -=- - 0.25 

2 3 3-

1 1 
't = - = -- = 4 sec 

co2 0.25 

1 0.25 
(j) = - = -- = 0.04 rad/sec 

1 ~'t 6.3 

7. The transfer function of the lag network is 

4s+ 1 
Ge(s) = 25s + 1 

8. Bode plot of the compensated system is drawn as shown in Fig. 8.24. 

From the graph the gain cross over frequency is 0.7 rad/sec. 

The phase margin is 46°. 

As the specifications are satisfied, the design is complete. 

Control Systems 

The effects of lag compensation on the response may be summarised as follows. 

Frequency response 

1. For a given relative stability, the velocity error constant is increased. 

2. The gain cross over frequency is decreased, which in tum means lesser bandwidth. 
I 

3. For a given gain K, the magnitude curve is attenuated at lower frequencies. Thus the phase 
margin is improved. Resonance peak is also reduced. 

4. The bandwidth is reduced and hence its noise characteristics are better. 

Time response 

1. Time response is slower since undamped natural frequency is reduced. 

The lag compens~tor can be designed only if the required phase margin is available at any 
frequency. A type-2 system is absolutely unstable and a lag compensator can not be designed 
for this system. 
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8.4.3 Design of Lag-Lead Compensator 

A lead compensator increases the gain cross over frequency and hence the bandwidth is also increased. 
For higher order systems with large error constants, the phase lead required may be large, which in 

tum results in larger bandwidth. This may be undesirable due to noise considerations. On the other 
hand a lag compensator results in a lower bandwidth and generally a sluggish system. To satisfy the 
additional requirement on bandwidth, a lag or lead compensator alone may not be satisfactory. 

Hence a lag-lead compensator is used. The procedure for the design oflag-lead compensator is as 
follows: 

1. The required error constant is satisfied by choosing a proper gain. The phase margin and the 

bandwidth are obtained from the Nichols chart. If the phase margin falls short and the bandwidth 
is smaller than the desired value, a lead compensator is designed. 

2. If the bandwidth is larger than the desired value, lag compensator is attempted, if the phase 
margin desired is available at any frequency. If this results in a lower bandwidth than the 

desired bandwidth, a lag lead compensator is to be designed. 

3. To design a lag-lead compensator, we start with the design of a lag compensator. A lag 
compensator is designed to partially satisfy the phase margin requirement. It means that the 
gain cross over frequency, roge2, is chosen to be higher than that to be used, if a full lag 

compensation is designed. This ensures that the bandwidth is not reduced excessively by the 

lag compensator. 

4. The ~ and roge2 are known and the comer frequencies of the lag compensator can be obtained. 

Since a. = i, the frequency at which 20 log a. is available on the magnitude plot is the new 

gain crossover frequency roge3 . The maximum phase lead available is, 

(~) 1 + a. 

and rom = roge3 

With these parameters, a lead compensator is designed. Here, for the lead network, 

1 rom ro =-=-
2 m: ra. 

The log magnitude vs phase angle curve of the lag-lead compensated network is drawn on the 
Nichols chart, from which the bandwidth can be obtained. The procedure is illustrated by an 

example. 
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Example 8.5 

Consider the system, 

K 
G(s)- ---­

s(s + 5)(s + 10) 

Design a compensator to satisfy the following specifications. 

ess for a velocity input :s 0.045 

... > 45° 'l'pm-

Bandwidth OOb = 11 rad/sec 

Solution: 

1. 

or 

1 1 
~= -=- =25 

ess 0.04 

K 
50 = 25 

K = 1250. 

2. Bode plot and log magnitude Vs phase angle plot on Nichols chart are drawn in Fig. 8.25 and 
Fig. 8.26 respectively. 

From the graph in Fig. 8.25 the phase cross over frequency is 10.5 rad/sec. 

The phase margin is - 22° 

From the graph of Fig. 8.26, the Bandwidth is 13.5 rad/sec. 

Thus, since the Bandwidth is already large, a lead compensator will further increase it. A lag 
compensator provides the required phase margin at a frequency of about 2.3 rad/sec, which 
makes the bandwidth much smaller than desirable. Hence a lag-lead compensator only can 
satisfy all the specifications. 

3. Let us partially compensate first by a lag compensator. Choose the gain crossover frequency 
to be 4 rad/sec. At this frequency the gain of the uncompensated system is 16 db. 

.. 20 log ~ = 16 

~ = 6.3 ::: 8 (say) 

1 
Choose 00 1 = 1 rad/sec, then 002 = 8 = 0.125 rad/sec. The transfer function of the lag 

s+1 
compensator is Gcl(s) = 8s + 1 

The Bode plot of lag compensated system is also drawn in Fig. 8.25. 
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Fig. 8.25 Design of lag-lead compensator for Ex. 8.5. 
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on Nichol's chart for Ex 8.5. 
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4. Let us now design a lead compensator. Since p = 8, 

1 1 
a = - = - = 0.125 P 8 

The maximum phase lead provided by the lead network is, 

~m = sin-l C:~) 
7 

= sin-l -
9 

= 51° 

The gain to be provided by the lead network is 

1 
10 log a = 10 log "8 = 9 db. 

This gain occurs at a frequency, (Om = 6.8 rad/sec on the lag compensated gain plot. 

Thus (Om = 6.8 rad/sec 

The comer frequencies of the lead network are, 

C 6.8 
(Om "a = .J8 = 2.4 rad/sec 

0.416 sec 

:fa = 6.8.J8 = 19.23 rad/sec 

't2 0.052 sec 
The transfer function of the lead compensator is 

0.416s+1 
Gc2(s) = 0.052s + 1 

The open loop transfer function of the compensated system becomes, 

G( ) G () G () 1250 s+1 0.416s+1 
s cl s c2 S = s(s+5)(s+10) 8s+1 0.052s+1 

315 

The Bode plot of the lag-lead compensated network is drawn, from which the phase margin is 
obtained as 46°, which is acceptable. The IGI in db and angle of G are read from Bode plot for the 
compensated system and are tabulated in Table 8.2. 

Table 8.2 IGI in db and & at various frequencies 

(0 0.5 1.0 2.0 5.0 10 20 

IGI db 22 10 4 2 -4 -16 

LG -138 - 125 - 112 - 121 - 154 -195 
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These values are transferred to Nichol's chart. The intersection of - 3 db line with the curve is 
obtained at a frequency where IGI = 7 db. This magnitude of 7 db occurs at a frequency of 11 rad/sec 
as read from the Bode magnitude plot of the compensated system. This frequency is the bandwidth 
of the compensated system. 

Thus rob = 11 rad/sec. 

which is satisfactory. 

This completes the design of a lag-lead compensator for the system. 

Problems 

8.1 The open loop transfer function of a unity feedback system is given by, 

5 
G(s)- -----

s(s + 1)(0.5s + 1) 

What is the phase margin of this system. If a lag compensator given by, 

lOs + 1 
Ge(s) = 100s + 1 

is added in cascade with the forward path transfer function, determine, 

(i) Phase margin 

(ii) Gain cross over frequency 

(iii) Steady state error to a unity velocity input 

(iv) Gain margin 

8.2 A unity feedback system has a open loop transfer function, 

2 
G(s) = ---

s(s + 0.5) 

what is the steadystate error for a unit velocity input of the system. Design a lag compensator 
so that the steadystate error remains the same but a phase margin of 45° is achieved. Also 
obtain the RC network to realise this compensator. 

8.3 A unity feedback system has an open loop transfer function, 

K 
G(s)- ----

s(s + 4)(s + 10) 

It is desired to have a resonance peak of~ = 1.232. What value ofK will give this resonance 
peak. Design a cascade compensator to obtain a resonance peak of 1.13, with the same 
value of velocity error constant. 

8.4 For a unity feedback system"with, 

K 
G(s)- -­

s(s + 2) 

design a cascade lead compensator so that the steady state error for a unit velocity input is 
0.05 and the phase margin is 50°. What is the gain margin for these ~ompensated system. 
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8.5 Design a lag lead compensator for the unity feedback system with, 

K 
G(s)- ----

s(s + 1)(s + 2) 

and satisfying the specifications, 

K,. = 10 sec-1 

,j, = 50° 
't'pm 

B. W > 2 rad/sec 

8.6 Design a suitable compensator for a unity feedback system, 

K 
G(s)- ----

s(s + 1)(s + 4) 

to satisfy the following specifications. 

damping ratio () = 0.5 

Velocity error constant K,. = 5 sec-1 

Find the settling time of the compensated system for a unit step input. 

8.7 Design a suitable compesator for the unity feedback system, 

K 
G(s)------

s(O.ls + 1)(0.2s + 1) 

The specifications are, 

K,. = 25 sec-1 

Phase margin ~Pm > 45° 

Bandwidth rob = 12 rad/sec 

8.8 Consider the unity feedback system, 

K 
G(s) = s2(s+5) 

Design a suitable compensator to satisfy the specifications, 
,j, = 50° 't'Pm 

Ka = 0.2 

rob = 0.8 rad/sec 

8.9 For the unity feedback system with, 

K 
G(s)- ----

s(s + 1)(s + 6) 

317 

design a lag compensator to get a phase margin of 40° and a velocity error con::'li1llL of 
5 sec-I. Find the bandwidth of the compensated system and also the settling time for a unit 
step input. 

8.10 For the system in Problem 8.9 design a lead compensator to achieve the same specifications. 
Find the bandwidth and the settling time of the compensated system. 

-jJ-



9 State Space Analysis of 
Control Systems 

9.1 Introduction 

Mathematical modelling of a system plays an important role in the analysis and design of control 
systems. Transfer function is one such model, which we have used for analysis and design of control 
systems in the previous chapters. This is a useful representation if the system is linear, time invariant 
and has a single input and single output (SISO). It is also defined for systems with zero initial 
conditions only. The tools developed, viz, root locus technique, Bode plot, Nyquist plot, Nichol's 
chart etc are powerful in the analysis and design of control systems. But transfer function representation 
is not useful for, 

1. Systems with initial conditions 
2. Nonlinear systems 
3. Time varying systems and 

4. Multiple input multiple output (MIMO) systems 

further, the output for a given input can only be found. It does not throw any light on the variation 
of internal variables. Sometimes this information is necessary because, some internal variables may 
go out of bounds, eventhough the output remains within the desired limits. The methods discussed 
so far are known as classical methods. In this method, the output only is fedback to obtain the 
desired performance of the system. This may not result in the best or optimum performance of the 
system. It may be desirable to feedback additional internal variables to achieve better results. The 
design procedures in classical theory are mostly trial and error procedures. 

A need for a represenation which overcomes all the above draw backs was felt and the state space 
representation of the system was evolved. This representation forms the basis for the development of 
modern control systems. This representation contains the information about some of the internal 
variables along with the output variable and is amenable for analysis and design using digital computer. 
It is suitable for representing linear, nonlinear, time invariant, time varying, SISO and MIMO systems. 
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9.2 State Variables 

Consider an RLC network excited by an input vet) as shown in Fig. 9.1. 

L i(t) 
r>r>nC">~ 

v(t) 

Fig. 9.1 An RLC circuit 

The dynamic behaviour of this circuit can be understood by considering the loop equation, 

di 1 t 

Ri + L dt + C Ii dt = vet) ..... (9.1) 
-00 

Differentiating eqn. (9.1) we get a second order differential equation, 

d2i di i dv 
L dt 2 + R dt + C = dt ..... (9.2) 

di 
The solution of eqn. (9.2) requires two initial conditions, namely, i(o) and dt (0). i(o) is the 

current throught the inductor at t = 0 and from eqn. (9.1) with t = 0, we have, 

o 
v(O) - Ri(O) _l fi dt 

di C -00 

dt (0) = L 

o d' 
The quantities ~ Ii dt is the voltage across the capacitor at t = 0 and hence d: (0) is dependent 

-00 

on the inital voltage across the capacitor in addition to v(O) and i(O). Thus, if we know vet) for t ~ 0, 
i(O), the current through the inductor at t = 0 and vc(O), the voltage across the capacitor at t = 0, the 
dynamic response of the system can be easily evaluated. Inductor and the capacitor are the two 
energy storing elements in the network which are responsible for the behaviour of the network 
alongwith the input. Thus we can treat the current through the inductor and voltage across the 
capacitor, as the characterising variables of the network. If these variable are known at any time 
t = to' the network response can be easily found out. Hence these two variables describe the ~te of 
the network at any time t and these are the minimum number of variables that should be known at 
t = to to obtain the dynamic response of the network. 
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Now we can define the state and state variables as : 

The minimum number of variables required to be known at time t = to alongwith the input for 
t 2: 0, to completely determine the dynamic response of a system for t > to,are known as the state 
variables of the system. The state of the system at any time 't' is given by the values of these variables 
at time 't'. 

If the dynamic behaviour of a system can be described by an nth order differential equation, we 
require n initial conditions of the system and hence, a minimum of n state variables are required to be 
known at t = to to completely determine the behaviour of the system to a given input. It is a standard 
practice to denote these n state variables by xl(t), xit) ..... ~(t) and m inputs by ul(t), l1:2(t), ..... 
um(t) and p outputs by YI(t), Y2(t) ..... yp(t). 

The system is described by n first order differential equations in these state variables: 

d~l = Xl = fl (XI' x2 ... ~; uI' 11:2 ... urn' t) ..... (9.3) 

.. . .. . dx
n

·• . 

dt = Xn = fn (xl' x2 ... ~; ul' 11:2 ... urn' t) 

The functions fl_ f2 ... fn may be time varying or time invariant and linear or nonlinear in nature. 
Using vector notation to represent the states, their derivatives, and inputs as : 

..... (9.4) 

where X(t) is known as state vector and U(t) is known as input vector. We can wrie eqns. (9.3) 
in a compact form as, 

X (t) = f [X(t), U(t),t] ..... (9.5) 

where 

[

f1 [X(t), u(t), t]1 

f [X(t), U(t),t] = ~2 [X(t), u(t), t] 

fn [X(t), u(t), t] 

If the functions f are independent of t, the system is a time invariant system and eqn. (9.5) is 
written as, 

x (t) = f [X(t), U(t)] ..... (9.6) 

The outputs YI' Y2 ... yp may be dependent on the state vector X(t) and input vector U(t) and may 
be written as, 

yet) = g [X(t), U(t)] ..... (9.7) 
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where 

YI (t) 

Y 2 (t) 
yet) = 

is known as output vector. 
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For a single input single output systems (SISO) U(t) and yet) are scalars. Once the system state is 
known at any time t, the output can be easily found out since eqn. (9.7) is only algebraic equation and 
not a dynamic relation. 

9.3 State Equations for Linear Systems 

For linear systems, in eqn. (9.3), the derivatives of state variables can be expressed as linear 
combinations of the state variables and inputs. 

XI = all xI + al2 x2 + .,. + a ln ~ + bll u l + b l2 u2 + ... + blm urn 

x2 = azl XI + az2 x2 + .,. + azn xn + b21 u l + b22 u2 + ... + b2m urn 

Xn = ~I xI + an2 x2 + .,. + ann xn + bnl u l + bn2 u2 + ... + bnm um .... ·(9.8) 

where a;/ and bz/ are constants. 

Eqns. (9.8) can be written in a matrix form as, 

X (t) = A X (t) + BU (t) 

where X(t) is a n x 1 state vecotr 

A is a n x n constant system matrix 

B is a n x m constant input matrix 

U(t) is a m x 1 input vector. 

[an 
a l2 

a 21 a 22 A= . 

ani a n2 

... 

al'l [b
ll 

... a 2n . _ b21 
· ,B-. · . · . 
ann bnl 

..... (9.9) 

b12 . .. 

b

lm 
1 b 22 

. .. b 2m 

b n2 bnm 

Similarly, the outputs can also be expressed as linear combinations of state variables and inputs as, 

YI(t) = Cll xI + Cl2 X2 .. , + Cln Xn + d ll UI + d l2 U2 + ... + dim urn 
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Eqns. (9 -10) can be written compactly as, 

yet) = C X(t) + D U(t) 

Where Y (t) is a p x 1 output vector 

C is a p x n output matrix 

D is a p x m transmission matrix 

[~ll C= . 
cpl 

... ~ln 1 [~ll 
. . D= . 
Cpn ' dpl 

Control Systems 

..... (9.11) 

... ~:1 
The complete state model of the linear system is given by eqn. (9.9) are (9.11). 

X (t) = A X(t) + BU (t) 

yet) = C X(t) + DU (t) 

Eqn. (9.12) is known as the state equation, 

and eqn. (9.13) is known as the output equation. 

For a single input single output system 

X (t) = A X(t) + bu 

yet) = C X(t) + du 

..... (9.12) 

..... (9.13) 

.... (9.14) 

..... (9.15) 

Where band dare (n x 1) and (p x 1) vectors respectively. u(t) is the single input and yet) is the 
single output. In most of the control systems, the output is not directly coupled to the input and hence 
yet) is not dependent on u(t). Hence eqn. (9.15) is written as, 

yet) = C X(t) ..... (9.16) 

For time invariant systems, the matrices A, B, C and D are constant matrices. For time varying 
systems, the elements of A, B, C and D matrices are functions of time. In this book we will be 
concerned with linear, time invariant, single input single output systems only. 

State variable representation of a system is not unique. For a given system we may define different 
sets of variables to describe the behaviour of the system. In all such different representation the 
number of state variables required are the same, and this number is known as the order of the system. 
Let us consider the RLC circuit again, shown in Fig. 9.1. If the current, i, through the inductor and 
voltage, v

C
' across the capacitor are taken as state variables, we have, 

Defining 

dVe 
C dt = i(t) ..... (9.17) 

di 
L dt = vL(t) = v - i R - ve 

ve(t) ~ xl(t) 

i(t) ~ x2(t) 

vet) ~ u(t) 

..... (9.18) 
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1 
We have x\ (t) = C x2 (t) 

1 R 1 
x2 (t) = - L x\(t) - L xit) + L u(t) 

In matrix form, eqns. (9.19), (9.20) can be written as, 

or X (t) = A X(t) + b u(t) 

where 

Now, consider the eqn. (9.1) for the RLC circuit, 

di 1 t 

Ri + L - + - Sidt = v 
dt C 

-co 

The charge q is given by, 

t 

q(t) = Sidt 
-co 

and 
. dq 
1= -

dt 
In terms of the variable q, eqn. (9.23) can be written as 

d 2q di q 
L-+R-+-=v 

dt2 dt c 
Now if we defme the state variables as: 

and 

Thus 

x\(t) = q(t) 

x2(t) = ~; = i(t) = x\ (t) 

x\ (t) = x2 

d2q 
x2 (t) = dt 2 

q 
LC 
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..... (9.19) 

..... (9.20) 

..... (9.21) 

..... (9.22) 

..... (9.23) 

..... (9.24) 

..... (9.25) 

..... (9.26) 

..... (9.27) 

..... (9.28) 

..... (9.29) 

..... (9.30) 
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Eqns. (9.29) and (9.30) can be put in matrix form as, 

[ XI(t)] [°1 lR] [XI] [~l 
X2(t) = - LC -r::- x2 + L u(t) 

..... (9.31) 

Eqns (9.21) and (9.31) give two different representations of the same system in state variable 
form. Thus, the state variable representation of any system is not unique. 

9.4 Canonical Forms of State Models of Linear Systems 

Since the state variable representation of a system is not unique, we will have infinite ways of choosing 
the state variables. These different state variables are uniquely related to each other. If a new set of 
state variables, are chosen as a linear combination of the given state variables X, we have 

X=PZ 

where P is a nonsingular n x n constant matrix, so that 

Z=P-1 X. 

From eqn. (9.32), 

x =P Z =AX+Bu 

=APZ + Bu 

Z=AZ+13u. 

..... (9.32) 

. .... (9.33) 

. .... (9.34) 

Eqn. (9.34) is the representation of the same system in terms of new state variables Z and 

A =p-1 AP 

and 13 = p-1 B. 

Since P is a non singular matrix, p-1 exists. Now let us consider some standard or canonical forms 
of state models for a given system. 

9.4.1 Phase Variable Form 

When one of the variables in the physical system and its derivates are chosen as state variables, 
the state model obtained is known to be in the phase variable form. The state variables are themselves 
known as phase variables. Usually the output of the system and its derivates are chosen as state 
variables. We will derive the state model when the system is described either in differential equation 
form or in transfer function form. 

A general nth order differential equation is given by 

(n) (n-I) . _ (m) (m-I) b 
y + a1 y + ... + ~ _ 1 Y + ~y - bo u + bl u + ... + m-I Ii + bmu ..... (9.35) 

Where aj S and b
J 

S are constants and m and n are integers with n 2. m. 

(n) A dny d (m) dmu 
Ll __ an L\ --

Y = dtn u = dtm 
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The n initial conditions are y(o), Y (0), ... , (n~l) (0). If, for the present, we assume the initial 

conditions to be zero, we can obtain the transfer function of the system from eqn. (9.35) as, 

Y(s) bosm + blsm-I 
-+- ... + bm_Is + bm 

T(s) = U() = n n-I ..... (9.36) 
s s +als + ... +an_Is+an 

The initial conditions can be taken care of, after obtaining the state space representation. 

Case (a) m = 0 

It the derivatives of the inputs are not present in eqn. (9.35) and it can be written as, 
(n) (n-I) 
y + al y + ... + ~ _ I Y + ~y = bou 

Let us defme the state variables as, 
xI =y 

and 

"-2=x l =y 
x3 = x2 = Y 

. (n-I) 
~=xn_l= y 

(n) 
xn = y 

From eqn. (9.37) we have, 

(n-I) n-2 . 
X n = bou - al y - ~ y ... - ~ _ 1 Y - an Y 

= bou - al ~ - ~ ~ _ 1 ..• - an _ I x2 - ~ xI 

The above equations can be written in a matrix form as, 

In vector matrix notation we have, 

X =AX+bu 

o 
o 

o 0 

o 
o 

..... (9.37) 

..... (9.38) 

..... (9.39) 

..... (9.40) 

In this equation, we can observe that the system matrix A is in a special form. the diagonal above 
the main diagonal of the matrix contains alIi S and the last row contains the negatives of the coefficients, 
elj , of the differential equation. All other elements are zeros. Such a form of the matrix is known as 
companion form or Bush's form. Similarly, the vector b contains all elements to be zero except the 
last one. Hence, in view of these observations, the state space equations given by eqn. (9.39) can be 
written down directly from the differential eqn. (9.37). 
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The output y is equal to xI and hence the output equation is given by, 

y=CX 

where c = [1 0 0 ..... 0] 

Control Systems 

..... (9.41) 

If the transfer function is known instead of the differential equation, we can easily obtain a differential 
form as shown below. 

For m = 0, we have from eqn. (9.36) 

Yes) bo 
T(s) = U() = n n-I 

S S +a1s + .... +an 

..... (9.42) 

(Sn + a l Sn-I + ... + an) YeS) = bo U(s) 

or 
(n) (n-I) 
y (t) + a l Y + ... + an y = bou ..... (9.43) 

Eqn. (9.43) is the same as eqn. (9.37) and hence the state space model is again given by 
eqns. (9.39) and (9.41). A block diagram of the state model in eqn. (9.39) is shown in Fig. (9.2). 
Each block in the forward path represents an integration and the output of each integrator is takne a 
state variable. 

--,- J 

~ I 

\ I 

... ----~----" 

L..------~IIuf---------l 

Fig. 9.2 Block diagram representation of eqn. (9.39). 

We can also represent eqn. (9.39) in signal low graph representation as shown in Fig. (9.3). 

Fig. 9.3 Signal flow graph representation of eqn. (9.39). 

y 

? 0 
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If we have non zero initial conditions, the initial conditions can be related to the initial conditions 
on the state variables. Thus, from eqn. (9.38). 

Example 9.1 

Xl (0) = Y (0) 

x2 (0) = y (0) 

(n-l) 
"n (0) = y (0) 

Obtain the phase variable state model for the system 

y+2y+3y+y=u 

Solution 

..... (9.44) 

Here n = 3 and al = 2, az = 3, a3 = 1 and b = 1. Hence the state model can be directly written down as, 

and 

Example 9.2 

[ ::] = [~ ~ ~] [::] + [~] u 
X3 -1 - 3 - 2 X3 1 

X(O) = [yeO), y (0), Y (O)]T 

y = [1 0 O]X 

Obtain the companion form of state model for the system whose transfer function is given by, 

Yes) 2 
T(s) = -U-(s-) = --'s3=-+-s"""2-+-2-s -+-3 

Solution: 

Case a : 

The state model in companion form can be directly written down as, 

x=[~ 0 ~]X+[~]U 
-3 -2 -1 2 

Y = [1 0 O]X 

Case b: m:;t:O 

Let us consider a general case where m = n. 

The differential equation is given by 
(n) (n-I) n-2 n-I (n) (n-I) 

y +al y +az Y +"'+~-l Y +any=bo u +bl u + ... +bnu ..... (9.45) 
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The transfer function of the system represented by eqn. (9.45) is, 

Yes) bo sn + b1sn-1 + ... + bn-1s + bn 
T(s) = U( ) = n n-l 

S S + a1s + ... + a n-l S + an 

Eqn. (9.46) can be written as 

where 

and 
Yes) _ n n--I 
Y

1 
(s) - bO s + b i s + ... + bn 

Eqn. (9.47) is same as eqn. (9.42) with b =1. 

Hence its state space representation is given by eqn. 9.39. 

[~:l= 
0 1 0 0 0 

0 0 0 0 

0 0 0 0 1 

-an -an-l -an-2 -a2 -a1 

Control Systems 

..... (9.46) 

..... (9.47) 

..... (9.48) 

[}l 
0 

0 
u ..... (9.49) 

0 

and YI= xl ..... (9.50) 

The signal flow graph of this system is the same as in Fig. (9.3) with y = YI and bo = 1. 

From eqn. (9.48), we have 

Yes) = (bo sn + blsn- I + ... + bn) YI(s) 

(n) (n-l) 

or Y = bo Y 1 + b i Y 1 + .. , + bn_ I Y 1+ bn YI 

From eqn. (9.49) and (9.50), we have 

Y = bo xn + b i ~ + ... + bn_ I x2 + bn xl 

Substistuting for x n from eqn. (9.49), we have 

Y = bo (-an xl - an_ I x2 + .... - ~ ~-I - a l ~ + u) + 

b i ~ + ... + bn _ I X2 + bn Xl 

Y = Xl (bn - bo an) + X2 (bn_ I - bo an_I) 

+ ... + ~ (b i - bo a I) + bou ..... (9.51) 
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..... (9.52) 

The signal flow graph of the system of eqn. (9.45) is obtained by modifying signal flow graph 
shown in Fig. (9.3) as, 

U(s) 

Fig. 9.4 Signal flow graph of system of eqn. (9.45) 

For the more common case, where m ~ n - 1 in eqn. (9.35), bo = 0 and eqn. (9.52) can be written as 

y = [bn bn _ 1 ... bd X ..... (9.53) 

Where b! are the coefficients of the numerator polynomical of eqn. (9.46). In this case, the state 
space representation of eqn. (9.35) can be written down by inspection. 

Example 9.3 

Obtain the state space representation of the system whose differential equation is given by, 

y + 2 Y + 3 y + 6 y = ii - U + 2u 

Also draw the signal flow graph for the system. 

Solution 

In the given differential equation, 

al = 2, ~ = 3, a3 = 6 

and bo = 0, bl = 1, b2 = -1 and b3 = 2 

Substituting in eqns. (9.49) and (9.52), we have 

X {~6 -~3 -~J X + m u 

y = [2 -1 1] X 
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The signal flow graph of the system is given in Fig. (9.5). 

u 

Fig. 9.5 Signal flow g'~ for Ex. (9.3) 
'~ 

-6 
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y 

Phase variable representation is a simple method of obtaining the state space representation of a 
system. This plays a very important role in the design of a control systems in state space. But this 
representation is not useful in practice, as these phase variables often do not represent physical 
variables and hence are not available for measurement or control. They are given by the output and its 
derivatives. Higher order derivatives of the output are difficult to obtain in practice. Hence let us 
consider another more useful representation of state model of a system. 

9.4.2 Diagonal Form 

This form is also known as canonical variable form or normal form. The system matrix A in this case 
is obtained as a diagonal matrix. Let us consider the transfer function of the system given by 

Yes) bosn + blsn-I + ... + bn_Is + bn 
T(s) = U() = n n-I 

S S + als + ... + an-Is + an 
..... (9.54) 

Case a : All the poles ofT(s) are distinct and given by -PI' -P2' ... - Pn' Expanding T(s) in partial 
fractions, we have, 

Yes) n k· 
T(s) = -- = b + :E _1_ 

U(s) 0 i=l S + Pi 
..... (9.55) 

Eqn. (9.55) can be represented by a block diagram in Fig. (9.6) (a) and signal flow graph in 
Fig. (9.6) (b). 

Defming the output of each integrator as a state variable, as shown in Figs. (9.6) (a), (b) we have, 

XI =u-PI Xl 

X2 =u-P2 X2 

Xn = U'- Pn Xn 

y = kl 'Xl + k2 X2 + ... + ~ ~ + bO U 

..... (9.56) 

..... (9.57) 
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r---------~~bor-------------

+ 

+ 

U(s) 

--------- ..... ---

Fig. 9.6 (a) Block diagram representation of eqn. (9.55). 

Fig. 9.6 (b) Signal flow graph of eqn. (9.55). 

Expressing eqn. (9.56) and (9.57) in matrix form. 

/' 
/' 
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. .... (9.58) 

..... (9.59) 
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In eqn. (9.58) we observe that the system matrix A is in diagonal form with poles of T(s) as its 
diagonal elements. Also observe that the column vector b has all its elements as IS. The n equations 
represented by eqn. (9.58) are independent of each other and can be solved independently. These 
equations are said to be decoupled. This feature is an important property of this normal form which 
is useful in the analysis and design of control systems in state variable form. It is also pertinent to 
mention that the canonical variables are also not physical variables and hence not available for 
measurement or control. 

Example 9.4 

Obtain the normal form of state model for the system whose transfer function is given by 

Yes) s + 1 
T(s)- -----

U(s) s(s + 2)(s + 4) 

Solution 

T(s) can be expanded in partial fractions as, 

I 1 3 
T(s) == 8s + 4(s + 2) - 8(s + 4) 

The state space representation is given by, 

Y== [i ± -i] X 

Case b: Some poles of T(s) in eqn. (9.54) are repeated. 

Let us illustrate this case by an example. 

Yes) s 
T(s) == U(s) = (s + 1)2(s + 2) 

The partial fraction expansion is given by, 

2 1 2 
T(s) == s + 1 - (s + 1)2 - s + 2 

The simulation of this transfer function by block diagram is shown in Fig. (9.7). 

Defining the output of each integrator in Fig. (9.7) as a state variable, we have 

Xl == x2 - Xl 

X2 == U-X2 

X3 == u- 2x3 

and Y == -Xl +. 2x2 - 2x3 

..... (9.60) 

..... (9.61) 

..... (9.62) 

..... (9.63) 

..... (9.64) 

..... (9.65) 
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U(s) 

Fig. 9.7 Block diagram representation. 

Eqns. (9.64) and (9.65) can be put in matrix form as, 

. = [-0 
1 

~ 1 ~ 1 X + [~] u 
X 0 0 -2 I 

..... (9.66) 

Y = [-1 2 -2] X ..... (9.67) 

The above procedure can be generalised to a system with more repeated poles. Let Al be repeated 
twice, A2 be repeated thrice and A3 and A4 be distinct in a system with n = 7. The state model for this 
system will be, 

XI Al 0 0 0 0 0 I Xl 
0 

x2 0 Al 0 0 0 0 0 x 2 I 

X3 0 0 A2 0 0 0 X3 0 

x4 
0 0 0 A2 0 0 I x 4 + 0 u ..... (9.68) 

X5 0 0 0 0 A2 0 0 

lX' X6 0 0 0 0 0 A3 0 X6 

X7 .0 0 0 0 0 0 A4 x 7 

Matrix eqn. (9.68) is partitioned as shown by the dotted lines and it may be represented by 
eqn. (9.69). 

[~l[~ 
0 0 

J~l [~} [~~l J2 0 

0 J3 
u ..... (9.6?) 

0 0 

Eqn. (9.69) is in diagonal form. The sub matrices JI and J2 contain the repeated pies Al and A.2 
respectively on their diagonals and the super diagonal elements are all ones. J I and J2 are known as 
Jordon blocks. The matrix A itself is known to be of Jordon form. J I is a Jordon block of order 
2 and J2 is a Jordon block of order 3. J3 and J4 corresponding to non repeated pies A3 and A4 are said 
to be of order 1. The column vectors b l and b2 have all zero elements except the last element which 
is a 1. b3 and b4 are both unity and correspond to non repeated roots A3 and A4. 

Eqn. (9.68 )is said to be the Jordon form representation of a system. 
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9.5 Transfer Function from State Model 

From a given transfer function we have obtained different state space models. Now, let us consider 
how a transfer function can be obtained from a giveh state space model. If the state model is in phase 
variable form, the transfer function can be directly written down by inspection in view of eqns. 
(9.39) and'(9.42) or eqns. (9.46), (9.49) and (9.52). 

Alternatively, the signal flow graph can be obtained from the state model and Mason's gain formula 
can be used to get the transfer function. 

Example 9.5 

Obtain the transfer function for the system, 

[=:] = [~ ~ ~] [:~] + [~l u 
X3 -1 - 2 - 3 X3 1 

Y = [1 ° 0] X 
The transfer function is of the form, for n = 3 

bos3 + b1s
2 + b2s + b3 

T(s) -
- S3 + a1s

2 + a2s + a3 
From the matrix A, b, and C we have 

Hence 

Example 9.6 

al = 3, ~ = 2, a3 = 1 

bo = 0, b l = 0, b2 = 0, b3 = 1 

1 
T(s) - -=-----c:----­

-s3+3s2 +2s+1 

Obtain the transfer function of the system 

Here 

x=[~ ~ ~]x+[~]u 
-2 -4 -6 1 

Y = [1 -2 3] X + 2u 

a l =6 

bo= 2 

b l - bo at = 3 

b3 = 1 + 2(2) = 5 

b2 = - 2 + 2(4) = 6 

b l = 3 + 2(6) = 15 
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T(s) = 
2s3 +15s2 +6s+5 

S3 +6s2 +4s+2 
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If the state model is in Jordon form, we can obtain the transfer function as shown in Ex 9.7. 

Example 9.7 

Obtain the transfer function for the system 

[-1 1 ° "j [0] X = ° -lOX + ° u 

° ° -2 1 

Y = [-1 3 3] X 

Solution 

From the system matrix A, the three poles of the transfer function are -1, -1 and -2. The residues at 
these poles are -1, 3 and 3 (from the matrix C). The transfer function is, therefore, given by 

T(s) 
-1 3 3 

= -+ +--
s+l (s+1)2 s+2 

2S2 + 6s + 7 

(s + 1)2(s + 2) 

If the matrix A is not in either companion form or Jordon form, the transfer function can be 
derived as follows. 

X =AX+bu 

Y=CX+du 

Taking Laplace transform of eqn. (9.70), assuming zero initial conditions, we have 

s Xes) = A Xes) + b U(s) 

(sl - A) Xes) = b U(s) 

Xes) = (sl - Ar! b U(s) 

..... (9.70) 

..... (9.71) 

..... (9.72) 

Taking Laplace transform of eqn. (9.71) and substituting for Xes) from eqn. (9.72), we get 

yes) = C (sl - Ar! b U(s) + d U(s) ..... (9.73) 

= [C (sl -Ar! b + d] U(s) 

T(s) = C (sl - Ar! b + d 

If d is equal to zero, for a commonly occuring case, 

T(s) = C (sl -Ar! b ..... (9.74) 



336 Control Systems 

Since a transfer function representation is unique for a given system, eqn. (9.74) is independent of 
the form of A. For a given system, different system matrices may be obtained, but the transfer 
function will be unique. 

Since 

the roots of 

-I Adj(5I - A) 
(51 - A) = lsi - A I 

lsI -Ai = ° ..... (9.75) 

are the poles of the transfer function T(s) and eqn. (9.75) is known as the characteristic equation of 
the matrix A. 

Example 9.8 

Obtain the transfer function for the system, 

Solution 

[-1 ° -1] [0] X= ° -1 1 X + 1 u 
1 -2 -3 1 

Y = [1 ° 1] X 

[

s + 1 

(sl - A) = ° 
-1 

° s+1 

2 
1 : -1 

s+3 

(sI-Ar
l 

= s3+5s2 +10s+6 

The transfer function is given by, 

T(s) = _1_ [1 0 1] 1 
[

S2 +4s + 5 

L1(s) 1 
s+ 

Where L1(s) = s3 + 5s2 + lOs + 6 

[

1-S ] 
T(s) = _1_ [1 ° 1] 52 +5s+5 

L1(s) 
(s + 1)(s -1) 

s(s -1) 

2 

S2 + 4s + 4 

- 2(s + 1) 

-(s+l)l 
s+l 

(s + 1)2 

2 

S2 +4s+4 

- 2(s + 1) 

-(s+1)l [0] 
s + 1 1 

(s+1)2 1 
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9.6 Diagonalisation 

The state model in the diagonal or Jordon form is very useful in understanding the system properties 
and evaluating its response for any given input. But a state space model obtained by considering the 
real physical variables as state variables is seldom in the canonical form. These physical variables can 
be readily measured and can be used for controlling the response of the system. Hence a state model 
obtained, based on physical variables, is often converted to canonical form and the properties of the 
system are studied. Hence we shall consider the techniques used for converting a general state space 
model to a Jordon form model. Consider a system with the state space model as, 

X =AX + bu 

y = CX + du 

..... (9.76) 

..... (9.77) 

Let us define a new set of state variables 'Z', related to the state variables X by a non singular 
matrix P, such that 

X=PZ 

X =PZ 

Substituting eqns. (9.78) and (9.79) in eqn. (9.76), we have 

PZ =APZ + bu 

or 

also 

Z = p-1 APZ + p-1 bu 

y = CPZ + du 

Let us select the matrix P such that p-1 AP = J where J is a Jordon matrix. 

Thus 

where 

and 

Z = JZ + bu 
y = cZ + du 

b = P-1b 

c =CP 

..... (9.78) 

..... (9.79) 

..... (9.80) 

..... (9.81) 

..... (9.82) 

..... (9.83) 

Now how to choose the matrix P such that p-1 AP is a Jordon matrix? In order to answer this 
question, we consider the eigenvalues and eigenvectors of the matrix A. 

9.6.1 Eigenvalues and Eigenvectors 

Consider the equation 

AX=Y ..... (9.84) 

Here an n x n matrix A transforms an n x 1 vector X to another n x 1 vector Y. The vector X has 
a direction in the state space. Let us investigate, whether there exists a vector X, which gets transformed 
to another vector Y, in the same direction as X, when operated by the matrix A. 

This means 

or 

Y=AX 

AX=AX 

[A - AI] X = 0 

where A is a scalar. 

..... (9.85) 

..... (9.86) 
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Eqn. (9.86) is a set of homogeneous equations and it will have a nontrivial (X"# 0) solution if and 
only if, 

IA - All = 0 ..... (9.87) 

Eqn. (9.87) results in a polynomial in A given by, 

An + a l An- I + ~ An- 2 + ... + an_IA + an = 0 ..... (9.88) 

There are n values of A which satisfy eqn. (9.88). These values are called as eigen values of the 
matrix A. Eqn. (9.88) is known as the characteristic equation of matrix A. Since eqns. (9.87) and 
(9.75) are similar, the eigen values are also the poles of the transfer function. 

For any eigenvalue A = Ai' from eqn. (9.86) we have, 

[A - Ai I] X = 0 ..... (9.89) 

For this value of Ai' we know that a nonzero vector Xi exists satisfying the eqn. (9.89). 
This vector X\ is known as the eigenvector corresponding to the eigenvalue \. Since there are 
n eigenvalues for a nth order matrix A, there will be n eigenvectors for a given matrix A. Since 
IA - All = 0, the rank of the matrix (A - AI) < n. 

If the rank of the matrix A is (n - 1), there will be one eigenvector corresponding to each A\. Let 
these eigen vectors corresponding to AI' A2, ... An be ml, m2, ... mn respectively. 

Then, from eqn. (9.85), 

Ami = Al m l 

Am2 = A2 m2 

Amn = An mn 

Eqn. (9.90) can be written in matrix form as, 

A [m\, m2, ... mn] = [AI m l , A2 m2, ... An mn] 

We can write eqn. (9.91) as, 

[~:.1:2 ~ I A [m l , m2, ... mn] = [m l , m2, ... ~] 

o 0 An 

Defming, 

..... (9.90) 

..... (9.91) 

..... (9.92) 

where M is called as the modal matrix, which is the matrix formed by the eigen vectors, we have, 

AM = MJ ..... (9.93) 

Where J is the diagonal matrix formed by the eigen values as its diagonal elements. 

From eqn. (9.93) we have 

J = ~I AM ..... (9.94) 

This is the relation to be used for diagonalising any matrix A. Ifthe matrix P in eqn. 9.80 is chosen 
to be M, the model matrix of A, we get the diagonal form. 
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If all the eigenvalues of A are distinct, it is always possible to find n linearly independent eigenvectors 
and the J matrix will be diagonal. On the other hand if some of the eigenvalues are repeated we may 
not be able to get n linearly independent eigenvectors. Corresponding to the repeated eigen values, we 
will have to obtain, what are known as generalised eigenvectors. These vectors also will be linearly 
independent and the resulting J matrix will be in the Jordon fonn as given in eqn. (9.68). Let us 
illustrate these different cases by some examples. 

Example 9.9 

This examples illustrates the case when all the eigen values are distinct. Consider the matrix 

Solution 

Since A is in triangular fonn the eigen values are the values on diagonal. 

Consider 

Al = 1, A2 = 2 and A3 = 3 

IA - All 

1- A 

IA - All = 0 
o 

o 2 

2-A 1 

o 3-A 

It can be shown that the eigen vector can be obtained as any non zero column of adj (A - AI). 
Thus, 

[

(2 - A) (3 - A) 

adj IA - All = ~ 

o 
(I-A) (3-A) 

o 

-2 (2-A) 1 
-(I-A) 

(I-A) (2-A) 

Let us find the eigen vector corresponding to A = 1. 

[
2 0 - 21 

adj (A - I) = 0 0 0 

o 0 0 

The two non zero column of adj (A - I) are linearly dependent and hence anyone of them can be 
taken as an eigen vector. 

(Any constant multiple of the vector 
also qualifies as an eigen vector) 
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Similarly for A = 2 and A = 3 we have 

[

10-1] 
~I = 0 1 -1 

. 0 0 1 

[

1 0 

~IAM= 0 1 

o 0 
= ~l[~ ~ ~][~ ~ ~] 
-1 0 0 3 0 0 1 

Carrying out the multiplication, we have, 

J~[~ ~~] 
Example 9.10 

Let us consider the case when roots are repeated. Consider 

A = [~ ~ ~] 
Solution: 

The eigen values of A are 

Al = 1 and 1..2 = 1..3 = 2 

The adj (A - AI) is given by 

[

(2 - 1..)2 

Adj(A - AI) = ~ 

For 1..=1 

-(2-1..) 

(1-1..) (2-1..) 

o 

Adj(A-I)=[~ ~l ~ll 

1-2 (2-1..) 1 
-(1-1..) 

(1-1..) (2-1..) 

..... (9.95) 
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1 . 

Any non zero column of Adj (A - AI) qualifies as an eigen vector. 
" , '-,' . 

~ , 

[
1] _ . } ; . it l 

.. m = 0 ,~ ',. 
I 0 ~~~. 

Since A = 2 is a repeated eigen value, it is possible to get either two li~eatl, iAdtJ'ltft.~ ~'_~ri 
vectors or one linearly independent eigen vector and one generalised eigen vector. In ~etWt\~ I~A: is 
repeated r times, the number of linearly independent eigen vectors is eqwli to the ril18t1 of,<AJ..'1J , 
or [n - rank of (A - Ai I)] where n is the order of the matrix A. • ~ '\ , /.~j., 

In the present example, ' • t;, ' 
.. 'f" 

[

-1 

[A - 21] = ~ 

I 2-

o I 

o 0 

\ : 
; . 

, i ~' 
" ' 
:' .. 

The rank P [A - 21] = 2 , , ~ 
, I 

:, nullity 11 [A - 21] = 3 - 2 = 1 j I, ", ' " ' 

We can find only one linearly independent vector for the repeated eiae6 v;1ll,.../l.:l: ~' • .t~tbe 
obtained by any non zero column of adj [A - AI]. From eqn. (9.95) with A = t, W, b~; ; , ,. 

Adj[A-21] = [~ ~ i] \,~:, 
. 

[ 
1] ~ , '; ~ ;' , t; ~ 

: . m = 1 ; , '. ~ • • 
2 i , " • 

o \ '\ • 0;' • 

The third eigen vector can be obtained by considering the differential of jol·,kA J J '" ~.9~); .. ~J ~ f( 

with respect to A and putting A = 2. ~ 1)~ L ~; ~~, , 

d [1-2 (2-A)] '" ".!~ " I 

m = - - (1 - ~) . ~ J ., ~ 'f ' I 3 /I, ~ of. ~' 

dA (1- A) (2 - A) A=2 'I "/f~'i;; .' ' 
.i) . },~' ..• J,,_i 

~, ~ .;;. t::' " 

~~ .,. '. 

': , f ',' 

'. -, ~ I 
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The modal matrix is given by 

[
1 1 2] 

M = 0 1 1 

001 

[
1 -1 -1] 

~I = 0 1 -1 

o 0 1 

J~~I AM ~ [~ -~l ~:] [~ ~ ~] [~ 0 :] 

~ [~ ~ !] 
This is the required result. 

Example 9.11 

Consider the matrix, 

[
1 1 2] 

A= 0 2 0 

002 

Obtain the Jordon form of the matrix. 

Solution: 

The eigen values of A are, 

The adj (A - Ai) is, 

[

(2 - 1..)2 - (2 - A) 

o (1-1..) (2-1..) 

o 0 

-2(2-1..) 1 
- (I-A) 

(1-1..) (2-1..) 

The eigen vector of Al = 1 is any non zero column of Adj (A - Ai I). 

[
-1 1 2] 

Adj(A - I) = 0 0 0 

o 0 0 

Control Systems 
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The three columns of (A - I) are linearly dependent. 

For the repeated eigen value 1..2 = 1..3 = 2 

(A-2I){f f ~1 
The rank p (A - 21) = 1 

and nUllity 11 (A - 21) = 3 - 1 = 2 

Hence we can find two linearly independent eigen vectors for the repeated eigen value A = 2. The 
two eigen vectors can be found by considering the equation 

(A - AI) X = 0 with A = 2 

or 

Choose xl' x2 and x3 to satisfy this equations. Since there is only one equation and 3 variables, we 
can choose two variables arbitrarily. 

We have xl = x2 + 2x3 

One solution is obtained by taking xl = 0, x2 = 2 and x3 = -1. Another linearly independent solution 
is obtained by taking 

Xl = 1, x2 = 1 and x3 = 0 

The modal matrix is, 

M=[~ ~l i1 

-1 -21 o -1 

2 



Control Systems 
" ~ ,,~ 

, '; -N' ,,(~do, Ntf' ix is given by, 
n-II ... f I 

~ , ,~ '. J = M" AM 
( P , ' ." 

'. ", '" 4' [ 1 [ 1 [ 0 1 : rfC ~ I = ~ -~ ~ ~ ~ ~ ~ ~ 2 : 

>"'j'j'" 0 2 0 0 2 0 -1 0 1. .- ~ , 
" ,' . fL ' \ 

" '" " 

:'::: . " [~ ~ ~ 1 
~ , ,~ ">, 

.' ~Yf 'ot~e that the Jordon matrix is purely a diagonal matrix eventhough a root is repeated. 

, ~; ~~." "'.', ..i(>a f~ the m~~ix A, when it .is in the companion form deserves special attention. 

-"l~~~fJ~ ~ 1-04'11 of A ~re dIstm~t and are gIven by AI' 1..2' ... An 

I ', 'i:J:l t;thll~" ~ modal matnx can be shown to be equal to, 
'~f" .r;!t ·r'f " 

1. .. V";', ." •• 1 1 1 . ", . ,. ~. . .. 
f • "I' 

Al 1..2 An 

M= 1..2 1..2 1..2 
I 2 n 

4 '. ' ( : 
" ' .. 

j " j •• ", 

. . , I , 
, -', An-I 

I An-I 
2 An-I 

n 

, ~ . ~ ~ ~ is t special matrix and is known as Vander Monde Matrix. 

;, ~. ~ ', ~¥¥~r<lOts of A are repeated. Let us consider an example in which the order of the 
, ' . ;~ ... ItBd the roots are 
, ;'/i ',," " ,. .. AI' AI' AI' 1..2' t..2, 1..3 

i" ~\ ~e'm.atrix A is in companion form, for an) repeated root of A, we can find only one 
• i . ;~ly ~pendent eigenvector and the other eigenvectors corresponding to this root are 
. " ... r,a~f'" ,eig,~vectors. The modal matrix in this case can be obtained as, 

, • 0 0 0 
,! , ' Al 0 1..2 1 1..3 
} .. 

1..2 A~ 1..2 
M= I 21..1 21..2 3 

, , , 
-, i ; ~(An-I) ~£(t..n-I) ~(An-I) An-I An-I An-I I dA I 2! dA~ I 2 dA 2 3 I 2 

, . 
, . 1 ! ,¥the t~ ,l..j" i~ r~eated r times, the qth eigen vector (q ~ r) corresponding to this eigen value 

~_i;,: 'll'~"b)' t 
~;' .·.L~ t 1 '.~ ~ 
\ \.:" 1 dq- I 

!:';~' ~~in " \,.' (q -1) dAr l [1 t..j A~ t..rIf 

. :,~~ ~f~ 1h~S obtained is known as the modified Vander Monde matrix. 

1 nt'~' .. ! _ f ~ t .. ' 
" ' 1 • 
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9.7 Solution of State Equation 

The state equation is given by, 

x (t) = AX (t) + bu (t) 

With the initial condition X(o) = Xo 

We can write eqn. (9.96) as, 

X (t) - A X (t) = bu (t) 

Multiplying both sides of Eqn. (9.97) by e-A\ we have 

Consider 

e-At [X (t) - A X (t)] = e-At bu (t) 

~ [e-At X (t)] = e-At X (t) - Ae-At X (t) 
dt 

= e-At (X (t) - A X (t)] 

From eqn. (9.98) and (9.99), we can write, 

..! [e-At X (t)] = e-At bu (t) 
dt 

Integrating both sides of eqn. (9.100) between the limits 0 to t, we get 

or 

t 

e-At X (t) I 
o 

t 

= f e-Ar b u (-t) d, 
o 

t 

e-At X (t) - Xo = fe-At b u (,) d, 
o 

t 

X (t) = eAt Xo + eAt fe-At b u (,) d, 
o 

t 

X(t)=eAtxo+ f eA(t-t)b u(,) d,. 
o 

345 

..... (9.96) 

..... (9.97) 

..... (9.98) 

..... (9.99) 

..... (9.100) 

. .... (9.101) 

The first term on the right hand side of eqn. (9.101) is the homogeneous solution of eqn. (9.96) 
and the second term is the forced solution. The matrix exponential eAt is defined by th~nfinite series, 

At _ A 2 t 2 Ai t i 
e - I + At + -- + .. ... +. -- + ..... 

2! j ! 

Eqn. (9.10 I) can be generalised to any "-state at t = 10 rather than t = 0, as 

1 

X(t)=eA(t-to)X(to)+ J eA(t-t)bu(,)d,. . .... (9.102) 
10 

Let us concentrate on the homogenous solution. 
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If u(t) = 0, we have 

.... . (9 .103) 

This equation gives the relation relation between the initial state Xo and the state at any time t. The 
transition from the state Xo to X(t) is carried out by the matrix exponential eAt. Hence this matrix 
function is known as the state transition matrix (STM). If the STM is known for a given system the 
response to any input can be obtained by using eqn. (9.101). This is a very important concept in the 
state space analysis of any system. 

9.7.1 Properties of State Transition Matrix 

Let the state transition matrix be denoted by, 

<I> (t) = eAt 

Some useful properties of STM are listed below. 

1. <I> (0) = eAO = I; I is a unit matirx 

2. <1>-1 (t) = [eAtrl = e-At = <I> (- t) 

3. <I> (tl +~) = eA(tl + t2) = eAt I. eAt
2 

= <I> (t l ) <I> (~) = <I> (~) <I> (t l ) 

The solution of the state equation can be written in terms of the function <I> (t) as, 

t 

X(t) = <I> (t) Xo + f <I> (t - .) b u (.) d. 
o 

. .... (9.104) 

In the solution of state equation, the STM plays an important role and hence we must find ways of 
computing this matrix. 

9.7.2 Methods of Computing State Transition Matrix 

There are several methods of computing the matrix exponential eAt. Let us consider some of them. 

(a) Laplace transform method 

Let X =AX; X(O) = Xo 

Taking Laplace transform of eqn. (9.105), we have, 

(s X(s) - Xo) = A Xes) 

This equation can be written as, 

[sI - A] X (s) = Xo 

X (s) = (sI - Arl Xo 

Taking inverve Laplace transform of eqn. (9.106) we get, 

X(t) = f.-I (sI - Arl Xo 

Comparing eqn. (9.107) with eqn. (9.103), it is easy to see that, 

eAt = f.- I [(sI -Arl] 

..... (9.105) 

..... (9.106) 

.... . (9.107) 

..... (9.108) 
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Example 9.12 

Find the homogenous solution of the system, 

x=[_~ _~]x; 
Solution 

The solution of the given system is given by, 

X(t) = eAt Xo 

Let us compute the state transition matrix eAt using Laplace transform method. 

eAt = 1',-1 [(sl - Arl] 

(sl - A) = [~ ~] - [ _0 2 ~ 3 ] 

[s -1] 
= 2 s+3 

(sl -Arl 1 [s +3 
= S2 +3s + 2 - 2 ~] 

(s + 1) (s + 2) 

eAt = 1',-1 [sl -Ar l 

(5+ 1) :(5+ 2)] 
(s + 1) (s + 2) 

[ 
2 -I -21 e -e 

= -2e-' +2e-21 

-I -21 1 e -e 

-e-I +2e-21 

The homogeneous solution of the state equation is given by, 

X(t) = eAt Xo 

[ 
2 -I -21 e -e 

= -2e-' +2e-21 
e-

I 

_e-
21 1 [01] 

-e-I +2e-21 

347 
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The solution can be obtained in the Laplace transfer domain itself and the time domain solution can 
be obtained by finding the Laplace inverse. This obviates the need for finding Laplace inverse of all 
the elements of eAt, Thus 

X(s)= (sI-Arl Xo 

[ 

s+3 

(s + l)(s + 2) 
X(s) = -2 

(s + l)(s + 2) 

[ 

s+3 1 
= (S+I~c;+2) 

(s + l)(s + 2) 

[ 
2e -t - e -2t 1 

X(t) = _2e-t +2e-2t 

(b) Cayley - Hamilton Technique 

(S+I):(S+2)1 [~] 
(s + l)(s + 2) 

Any function of a matrix f(A) which can be expressed as an infinite series in powers of A can be 
obtained by considering a polynomial function g(A) of order (n - 1), using Cayley Hamilton theorem, 
Here n is the order of the matrix A. 

Cayley - Hamilton theorem states that any matrix satisfies its own characteristic equation. 

The characteristic equation of a matrix A is given by, 

q(A) = IAI - AI = An + a l An - I + .... + ~ _ I A + an = 0 ..... (9.109) 

The Cayley Hamilton theorem say:, that, 

q(A) = An + a l An -I + .... + an _ I A + an I = 0 ..... (9.110) 

Let f(A) = bo I + b l A + b2A2 + .... + bnAn + bn+ I An+ 1+..... . .... (9.111) 

Consider a scalar function, 

f(A) = bo + bl A + b2 A2 + .... + bn An + bn+ I An+ 1+..... . .... (9.112) 

Let f(A) be divided by the characteristic polynomial q(A) given by eqn. (9.109). Let the remainder 
polynomial be g(A). Since q(A) is of order n, the remainder polynomial g(A) will be of order (n - 1) 
and let Q(A) be the quotient polynomial. Thus, 

f(A) = Q(A) q(A) + g(A) ..... (9.113) 

Let g(A) = a o + a l A+ a l A2 + ..... + an_I An-I 

The function f(A) can be obtained from eqn. (9.113) by replacing A with A 

Thus f(A) = Q(A) q(A) + g(A) ..... (9.114) 
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But q(A) = ° by Cayley Hamilton theorem. 

f(A) = g(A) 

- A A2 An-I - ao + a l + a 2 + ..... + an - I 

..... (9.115) 

..... (9.116) 

Since q(A1) = ° for i = 1,2, ... n 

we have from eqn. (9.113), 

f(A) = g(A) for i = 1, 2, ... n ..... (9.117) 

Eqn. (9.117) gives n equations for the n unknown coefficients ao' ai' ... an _ I of g(A) 

We notice that g(A) is a polynomial of order (n - 1) only and hence f(A) which is of infinite order 

can be computed interms of a finite lower order polynomial. 

To summarise, the procedure for finding a matrix function is : 

(i) Find the eigen vlaues of A. 

(ii) (a) If all the eigenvalues of A are distinct solve for the coefficients a
l 

of g(A) using 

f(A) = g(A) for i = 1, 2, ... n 

(b) If some eigenvalues are repeated, the procedure is modified as shown below. 

Let A = Ak be repeated r times. 

dJq(A)1 . 
Then ~ = ° for J = 0, 1, ... r - 1 

A=Ak 

Using this equation in eqn. (9.114), we get 

djf(A)1 = dJg(A)1 
dAJ d~J 

A=Ak ~ A=Ak 
for j = 0, I, ..... r - 1 

This gives the required r equations corresponding to the repeated eigen value Ak. Proceeding 
in a similar marmer for other repeated eigenvalues and using eqn. (9.116) we get the necessary 
equations to evaluate, 

a
l
, for j = 0, 1, 2 ... n - 1 

(iii) The matrix function f(A) can be computed using the relation, 

f(A) = g(A) 

The procedure is illustrated using a few examples. 

Example 9.13 

Find f(A) =A4 + 2A3 

where A=[_~ _~] 
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Solution: 

The eigenvalues of A are obtained from, 

q(A.) = I=~ _5
1
_A.I = 0 

A. (A. + 5) + 6 = 0 

A.2 + SA. + 6 = 0 

or A. = -3,-2 

Since the order of A is 2, 

Now 

g(A.) = 0.0 + 0.1 A. 

f(A.) = A.4 + n 3 

g(A.) = f(A.) for A. = -3, -2 

g(-3) = 0.
0 

- 30.
1 

= (_3)4 + 2 (_3)3 = 27 

g(-2) = 0.
0 

- 20.
1 

= (_2)4 + 2 (_2)3 = 0 

Solving for 0.0 and ai' we get 

Example 9.14 

For 

Find 

Solution: 

0.0 = - 54; 0.1 = - 27 

g(A.) ~ - 54 - 27 A. 

fCA) = g(A) = - 54 1- 27 A 

f(A) [-5~ _5~]-27 [_~ _~] 

A=[ ~ 0 ~l 
-6 -11 -6 

f(A) = eAt 

The characteristic equation is given by 

The eigenvalues are 

-A. 1 0 

q(A.) = 0 - A. 1 = 0 
-6 -11 -6-A. 

A. = -1, -2, and -3 

f(A.) = eAt 

Control Systems 
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Since A is of order 3, the remainder polynomial is 

g(A.) = <Xo + <XI A. + <X2 A.2 

g(A.
I
) = f(A.

I
) for i = 1, 2, 3 

-t <Xo- <XI + <X2 = e 
<X - 2<x + 4<x = e -2t 
012 

<X - 3<x + 9<x = e-3t 
012 

Solving these equations for <Xo' <XI and <X2' we have, 

<Xo = 3e-t - 3e-2t + e-3t 

3 
<XI = 2.5e-t - 4e-2t + "2 e-3t 

<X2 = 0.5e-t - e-2t + 0.5 e-3t 

f(A) = eAt = g(A) 

= <XoI + <XI A+ ~A2 

Substituting for A we get 

<Xl 

<Xo -Il<X2 

-II<Xl + 60<X2 

Substituting the values of <Xo' <XI and <X2' we get, 

[ 

3e -t _ 3e -2t + e -3t 

eAt = -3e-t +6e-2t +3e-3t 

3e-t -12e-2t +ge-3t 

Example 9.15 

Find eAt for A = [ 0 I] 
-4 -4 

Solution: 

The characteristic equation is 

A.2 + 4A. + 4 = 0 

2.5e -t _ 4e -2t + l.5e -3t 

-2.5e-t +8e-2t -4.5e-3t 

2.5e-t -I6e-2t + 13.5e-3t 

(A. + 2)2 = 0 or A. = -2, -2 

We have f(A.) = eA.t and g (A.) = <Xo + <XI A. 

351 

0.5e-t _e-
2t 

+0.5e-
3t 1 

_ 0.5e -t + 2e -2t _ 1.5e -3t 

0.5e-t _4e-2t +4.5e-3t 
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Since the eigen value is repeated, 

f(A) = g(A) 

and 

and 

or 

Example 9.16 

df("-l) dg("-J 
--=--
d\ d"-l 

f( -2) = g( -2) 

a - 20. = e-2t 
o I 

t eAtl = a 
A=-2 I 

t e-2t = 0.
1 

a = e-2t + 2t e-2t 
o 

f(A) = eAt = g(A) = 0.01 + alA 

[
0.0 0] [ 0 1] 

= 0 U o + u l - 4 - 4 

Obtain the solution of the state equation, 

. [0 X= 
-1 

Xo = [0 1] T and u is a unit step input. 

Solution: 

First the STM is computed. Using Laplace transform method 

1 [s + 2 s1] 
= S2 + 2s + 1 -1 

Consider the state equation, 

X =AX+bu 

Control Systems 
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Taking Laplace transfonn of this equation, 

sX(s) - Xo = AX (s) + b U(s) 

or (sl - A) X(s) = Xo + b U(s) 

X(s) = (sl - Arl Xo + (sl - Arl b U(s) 

Substituting the relevent values, 

X(s) 
S2 +2s + I 

=[:] 
+~~Il)l 

Taking inverse Laplace transfonn, we get, 

[
1 -tj 

X(t) = ~~ 
Example 9.17 

Find the state response of the system, 

l 
0 1 

X = 0 0 
-6 -11 

For Xo = [1 0 O]I and a unit step input. 

Solution: 

[
S+2 1] [0]+[S2 :~:+l 
-2 s 1 -1 

S2 + 2s + 1 

+ ['(':1)'] 
(s+li 
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We have already calculated the STM for the A matrix of this example, in Ex. 9.12. Using this result in 
the response of the system. 

t 

X(t)=eAtXo+ J eA(t-t)bu(t)dt 
o 
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From Ex. (9.14), 

and 

[ 

3e-1 -3e-
21 

+e-
31 1 

eAIXO= -3e-I+6e-21+3e-31 

3e-1 -12e-21 +ge-31 

[ 

O.5e-(t-t) - e-2(t-t) + O.5e-3(t-t) 1 
eA(t--r) bu = _O.5e-(t-t) + 2e-2(t-t) _1.5e-3(t-t) 

O.5e-(t-t) _ 4e-2(t-t) + 4.5e-3(t-t) 

Control Systems 

Integrating between the limits 0 to t, we get 

-2(I-t) -3(I-f) 
O.5e-(I-t) _ e + O.5_e __ 

I 2 3 
f eA(I- -r) bu(t)d. = _ O.Se -(I-t) + e -2(I-t) _ O.5e -3(I-t) 
o 

O.5e -(I-t) _ 2e -2(t-t) + 1.5e -3(I-f) 

lOS -lOS -21 1 -31 -- . e + . e --e 
6 6 

O.5e -I _ e -21 + O.Se -31 

_ O.5e -I + 2e -21 -l.Se -31 

I 

X(t) = eAt xo + f eA(t--r)b u (t) d. 
o 

o 

1 0 5 -lOS -21 1 -31 -- . e + . e --e 
6 6 

O.Se -I _ e -2t + O.Se -31 

- O.Se-1 + 2e-2t -l.Se-31 

1 2 S -I 2 S -21 S -31 -+ . e - . e +-e 
6 6 

_ 2.Se -I + Se -21 + 3.Se -31 

2.Se -I -1 Oe -21 + 7 .Se -31 
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Example 9.18 

Obtain the solution of the following state equation by first obtaining the canmical form. 

With the initial condition X(O) = [1 0 - l]T 

Solution: 

355 

First let us obtain the canmical form of the given state equation. The system matrix A is given by, 

A = [~ ~ ~] 
Let X=PZ 

Where P is the modal matrix . 

Modal matrix for this matrix A was obtained in Ex 9.9. Using the result, we have 

[~ 
0 

:] P= 1 

0 

[I 0 -I] and p-1 = 0 1 -1 

o 0 1 

Using the transformation, we have 

Z = p-l A P Z + p-l bu 

(.: p-l AP gives the diagonal matrix with the eigen values 1,2 and 3 on the diagonal) 

[
1 0 0] [-1] 

Z= ~ ~ ~ Z+ -~ U 
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and Z(O) = p-l X (0) 

Solution of the above equation is given by, 

where 

t 

Z(t) = eJt Z(o) + feJ(t-t) b U('t)d't 
a 

Control Systems 

The state transmition matrix eJt can be easily obtained since J is in diagonal form. 

It is given by, 

[e' 0 

e;' ] e
Jt 

= ~ e2t 

0 

Thus 

[e' 0 

e;'][~] + f~' 
0 

e"L] [ =:J dt Z (t) = ~ e2t e2(t-t) 

0 0 

n fe(H'] Z (t) = 0 + t - e2
(t-t) d't 

o a e3(t-t) 
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We have 

e(t-t) 

Z (t) = [~] + 

e2(t-t) 

2 
_ e3(t-t) 

3 0 

Z (t) = m + 2 2 

1 e 3t 
--+-

3 3 

.!..(l-e2t ) 
2 

..!..C-1+e3t ) 
3 

XCt) = PZ Ct), 

X(t) = 

.!..(l_e2t ) 
2 

..!..Ce3t -1) 
3 

e3t 2 
-+-
3 3 

1 1 2t 1 3t ---e +-e 
6 2 3 

..!..Ce3t -1) 
3 

357 
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9.8 Qualitative Analysis of Control Systems 

Sofar we have discussed, 

(a) how to model a given physical system and 

(b) solution of such a system for a given input, i.e., -quantitative analysis of the system. 

We will now discuss some fundamental concepts about the control of these systems, i.e., qualitative 
aspects of these systems, when a controller is to be designed to obtain a desired response. 

There are two basic questions to be answered before we design a suitable controller for a given 
system, namely, 

(i) can we transfer the system from any initial state to any desired fmal state in fmite time by 
applying a suitable unconstrained control. 

(ii) by measuring the output for a finite length of time, can we determine the initial state of the 
system. 

These aspects were first introduced by Kalman and are defined as controllability and observability 
of the system respectively. These aspects playa very important role in the design of a controller for 
a given system. In this section we will only give elementary treatment of these aspects of the system. 

9.B.l State Controllability 

Definition 

A system is said to be state controllable at t = to if it is po~sible to transfer the initial state X (to) to any 
final state X (tf) in fmite time, u&ing an unconstrained control signal u(t). If every state is controllable, 
the system is said to be completely state controllable. 

Kalman's test for control/ability 

Consider the dynamical system described by the state equation, 

X =AX+Bu 

where X is a n-dimensional state vector 

u is an scalar control signal 

A is an n x n system matrix 

B is an n x I input matrix 

..... (9.118) 

Without loss of generality, let us consider the initial time 10 = 0 and the fmal desired state to be the 
origin of the state space. 

The solution of the state eqn. (9.118) is given by, 

t 

X(t) = eAtX(O) + f eA(t--c)B uCr) dt 
o 
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Since the fmal state at t = tf Le., X(tf) = 0, we have, 

t f 

or 

X(tf) = 0 = eAtf X(O) + f eA(tf-t) B u(.) d. 
o 

t f 

X(O) = _e-Atf f eA(tf-t) B u(.) d. 
o 

t f 

X(O) = - fe-At B u(.) d. 
• 0 
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. .... (9.119) 

If we are able to obtain a u(t) for any given X(O) from eqn. (9.119), the system is controllable. 

Using eqn. (9.116) with f(A) = e-At, we can write e-At as, 

Substituting eqn. (9.120) in eqn. (9.119), we have, 

Let· 

Then 

Eqn. (9.122) can be written in the matrix form, 

~o 

~I 
X(O) = [B : AB : A 2B : ..... : An-IB ] ~2 

..... (9.120) 

..... (9.121) 

..... (9.122) 

..... (9.123) 

A control u(t) exists, which transfers any given initial state X(O) to the origin of state space, if the 
vector [~o' ~l' ... ~n- dT can be obtained from eqn. (9.123). It requires that the n x n matrix 

[B : AB : A2B : ... : An-IBJ 

be non singular, i.e., its rank be equal to n. 
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This result can be extended to a more general case where the input vector is of dimension r. In the' 
equation 

u is an m-vector and 

B is an n x m matrix 

X =AX+Bu 

The controllability condition in this case can be stated as : 

The (n x nm) matrix 

has a rank n. 

..... (9.124) 

..... (9.125) 

The matrix Qc is known as the controllability matrix. For complete state controllability, therefore, 
all the columns of Qc must be linearly independent. This test for deciding the controllability is known 
as Kalman's test for controllability. 

Gilbert's test for Controllability 

Let us now consider an alternate test for examining the controllability of a given system. Let us 
suppose that the eigenvalues of A in eqn. (9.124) are distinct. It is possible to transform the A matrix 
into a diagonal matrix using a transformation matrix P. As already discussed in section 9.6, if 

X=PZ 

eqn. (9.124) can be transformed to 

Z = p-l APZ + p-l Bu ..... (9.126) 

where P matrix is the modal matrix and p-l AP is a diagonal matrix with eigen values on the 
diagonal. Eqns. (9.126) are first order uncoupled differential equations. The kth equation is given by 

Zk = Ak ~ + a kl ul + a k2 ~ + ... + akIn urn 
where Ak is the kth eigenvalue of A 

and a kl , a k2, ... akIn' are the kth row elements of p-l B 

If all the elements ofkth row ofP-l B, i.e., 

a kl = a k2 = ... = akIn = 0 

..... (9.127) 

then no control signal exists in eqn. (9.127) and hence the state variable Zk cannot be controlled. 

Hence the condition for complete state controllability is that none of the rows of P-lB in 
eqn. (9.126) should contain all zeros. 

The above treatment can be extended to the case where the matrix A has repeated eigen values. 
In this case the matrix A can be transformed to Jordon's cononical form. If P is the modal matrix 
which transforms A into its Jordon form, let 

and hence 

X=PZ 

Z =p-l APZ+p-l Bu 
=JZ+p-1 Bu ..... (9.128) 
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For a 7th order system with eigen values AI' AI' A2, A2, A2, A3, and A4, J is of the form, 

Al 1 1 0 0 0 0 0 

o All 0 0 0 0 0 
----+------, 
0 o 1 A2 1 o 1 0 0 

1 

J= 0 0
1 

1 
0 A2 1 

1 
0 0 ..... (9.129) 

0 0 1 0 0 A2 1 0 0 
L ______ +_, 

0 0 0 0 o 1 A3 1 0 
L._r-, 

0 0 0 0 0 o 1 A 1 
• _4 

Each square block is called a Jordon block, as discussed earlier. J can thus be written as, 

where J 1 is of order 2 

J2 is of order 3 

and J3, J4 are each of order 1 

The condition for complete state controllability by this method can be stated as follows: 

The system is completely state controllable if and only if, 

1. No two Jordon blocks in eqn. (9.129), are associated with the same eigen value. 

2. The elements of the row of p-l B corresponding to the last row of any Jordon block of J are 
not all zero. If some of the Jordon blocks are of order 1, i.e., the corresponding eigen values 
are distinct, the rows in p-l B corresponding to these eigen values must not contain all zeros. 

It is to be noted that application of Gilbert's method requires that the equations be put in the 
Jordon's form. Kalman's test can be applied to any representation of the given system. 

Output Controllability 

In practical systems, we may have to control the output rather than the states. In such cases, we can 
define output controllability. State controllability is neither necessary nor sufficient for controlling the 
output. 

Consider the system 

x - is an n vector 

u - is an m vector 

Y - is a p vector 

X =AX+Bu 

Y=CX+Du ..... (9.130) 
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The above system is completely output controllable if it is possible to find an unconstrained 
control vector u(t) which will transfer any given initial output Y (to) to any final output Y (9 in fmite 
time. 

The test for complete controllability of the system in eqn. (9.130) is that the rank of the 
[p x (n + 1) m] matrix, 

..... (9.131) 

be equal to p. 
If in a particular system D = 0 i.e., the system output does not directly depend on the input, the 

rank of the matrix, 

must be p. 

Example -9.19 

Test the following systems for controllability using (i) Kalman's test (ii) Gilbert's test. 

(a) A=[j -1~ J B=m 

(c) A = [~ ~ ~l 
002 

B= [i] 
Solution: 

(a) A=[j -1~ J B=m 
(i) Kalman's test 

The controllability matrix, 

Qc=[B:AB:A2B] 

[

0 0 II 
= 0 1-6 

1 -6 25 

The rank of Qc is 3. 

Hence the system is controllable. 

(b) A= [~ 

(d) A= [~ 

0 

2 

0 

2 

0 

~l B= Hl 

~l B= Hl 

..... (9.132) 
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(ii) Gilberts test 

The eigen values are -I, -2,-3 

The modal matrix P is given by, 

[ 

3 2.5 0.5] 
p-l = -3 -4 -1 

1 1.5 0.5 

p-l B = [-~ ~ ~~] [~] 
1 1.5 0.5 1 

_ [0.5] - -1 

0.5 
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Since all the eigenvalues are distinct and none of the elements of p-l B is zero, the system is 

completely state controllable. 

(b) 

(i) Kalman's test 

The controllability matrix, 

The rank of this matrix is 2 and hence the system is not controllable. 
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(ii) Gilbert's method 

From example 9.9, we have the eigen values to be 1,2, and 3 and the modal matrix P to 
be, 

p = [~ 
0 

:] 1 

0 

[1 0 -1] p-l = 0 1 -1 

o 0 1 

= [~ 
0 

=:J [-:] and p-l B 

0 

=H] 
Since the first element in p-1B is zero, the system is not controllable. 

(i) Kalman's test 

The controllability matrix, 

Qc = [i ~ ~] 
The rank of this matrix is 1 and hence the system is not controllable. 

(ii) Gilbert's test 

The eigen values are 1, 2 and 2. 

From example 9.10, the modal matrix Pis 

[
1 1 2] 

P = 0 1 1 

o 0 1 
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and the Jordon form of A is J ~ l~ ~ r] 

~l~ l~ 
-1 -1] 1 -1 

0 1 

= l~ 
-1 

~:Hl] and p-I B 1 

0 

~m 
Since the first element of p-I B corresponding to the distinct eigen value, Al = 1, is zero 
and the last row element of p-I B corresponding to the repeated eigen value, ~ = 2, is 
also zero the system is not controllable. 

(d) A~l~ ~~] B~H] 
(i) Kalman's test 

The controllability matrix, 

Qc = H -~ ~] 
Since the rank of this is 1, the system is not controllable. 

(ii) Gilbert's method 

From example 9.11, the eigen values, the model matrix P, and its inverse are, 

Al = 1, A2 = A3 = 1 ; 

~ ~] ; p-I = r ~ ~1 
-1 0 lo 

-2] -1 

2 
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The Jordon fonn of A is, 

J ~ p-l AP~ [~ 
0 

~] 2 

0 

~ [~ 
0 

n J2 

0 
Since the Jordon block J2 and J3 are associated with the same eigen value 1..2 = 1..3 = 2, 
the system is )1ot controllable. In this case, it is not necessary to fmd the elements of 
P-lB. For any B, the system is not controllable. 

Example 9.20 

For the following system, detennine controllability. 

[
2 0 0] [0 1] X = 0 2 0 X + 1 0 [ ~l ] 
o 3 1 0 1 2 

Solution: 

The controllability matrix, 

Qc = [B : AB : A 2B ] 

The rank of this matrix is 3 and hence the system is completely state controllable. 

9.8.2 Observability 

Now let us define the second aspect of the system, i.e., observability. 

Definition 

A system is said to be completely observable, if every state X(to) can be detennined from the 
measurement of the output Y(t) over a finite time interval, to ~ t ~ tf . 

This property of the system is very useful, because the state vector can be constructed by observing 
the output variables over a finite interval of time. Therefore even if some states are not measurable, 
they can be estimated using the measurable output variables over a finite time. Estimation of all the 
state variables is required in some cases, when these state variables have to be fedback to obtain a 
desired control. 
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Kalman's test for observability 

Consider the following system, 

X =AX+Bu 

Y=CX 

The condition for complete state observability is that the observability matrix, 

has a rank n. 

C 

CA 

Qo = CA2 

CAn- 1 

Gilbert's test for observability 
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..... (9.133) 

..... (9.134) 

The state equations represented by eqn. (9.133) can be transformed to its canonical form using the 
transformation, 

X=PZ 

z = p-l APZ + p-l Bu 

Y=CPZ 

..... (9.135) 

Since p-lAP is a diagonal matrix, the states are decoupled. Information about one state is not 
available in the other state equations. Since Y is a combination of these decoupled states, if any 
column ofCP in eqn. (9.135) is zero, the corresponding state variable does not affect the output Y, 
i.e., if the jth column of CP contains all zeros, then the state variable ZJ is not observable from the 
output. This is the condition if all eigen values of A are distinct. 

If some of the eigen values are repeated, the matrix p-l AP is in Jordon form and the conditions for 
complete state observability are stated as follows: 

The system is completely state observable if, 

I. no two Jordon blocks in J = p-l AP are associated with the same eigen value. 

2. no columns of CP that correspond to the first row of each Jordon block consist of zero 
elements. If some of the eigen values are distinct, the Jordon blocks corresponding to these 
eigen values are of order I and hence the columns of CP corresponding to these block must 
not be all zero. 

The above conditions can be best illustrated by the following examples: 

(a) [-2 0] 
X= 0 -4 X Y = [2 -2] X 

The system is observable since C has no zero elements. 
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(b) 

(c) 

(d) 

(e) 

Control Systems 

. [-1 0] 
X = 0 -1 X Y=[l -l]X 

Not observable since two Jordon blocks are associated with the same eigen value-1. 

x = [-~ -~ ~] X 
o 0-2 

Y = [a b c] X 

(i) If a = 0 and / or c :t:. 0 the system is not observable. 

(ii) If a :t:. 0 and c:t:. O. the system is observable. 

[
=-1~ ~ __ 0 __ ~I 

. 0 1 -2 1 0 
X r- 0: 0 -2 1 X 

1 o 1 0 0-2 

Since all the elements of first column of C of Jordon block corresponding to the :!igenvalue 
A = -1 are non zero and all the elements of first column ofC of the Jordon block corresponding 
to the repeated eigenvalue A = -2 are non zero, the system is completely observable. 

1

-3 1 1 0 01 
X = - ~ - ~3_ ~ ~ - - ~ X 

o 0 1-2 1 
1 

o 0 1 0 -2 

[
0 1 1 2 -1] 

Y=OO:O 1 X 

Since all the elements of column 1 of C corresponding to the Jordon block of the repeated 
eigenvalue A = -3 are zero, the system is not observable. 

Problem 9.21 

Comment on the complete state observability of the following systems using, 

(i) Kalman's test 

(ii) Gilbert's test 

(a) x = [j 0 Jx 
-11 

Y = [1 -1 1] X 

= [~ I 2] 
X 2 1 X 

o 2 
(b) Y = [1 -1 0] X 
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(c) Y = [1 0 0] X 

(b) Y=[~ 0 ~]X 
Solution: 

(a) 

(b) 

x = [~ ~ ~] X 
-6 -11 -6 

Y = [1 0 0] X 

(i) Kalman's test 

The observability matrix, 

QO = [C~ ] = r~ 0 ~] 
CA 2 0 0 1 

The rank of Qo is 3 and hence the system is observable. 

(ii) Gilbert's test 

The model matrix for this system is, 

p+: -~ -i] 

CP = [I 0 0] [-: -~ -i] 
= [1 1] 

Since none of the columns of CP are zero, the system is completely observable. 

[
1 1 2] 

X= 0 2 1 X 

002 

Y = [1 -1 0] X 

369 
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(c) 

(i) Kalman's test 

The observability matrix, 

The rank of Qo is 2 and hence the system is not observable. 

(ii) Gilbert's test 

The modal matrix Pis, 

The transformed equations are, 

Y=CPZ 

= [1 -1 0] [~ ~ ~l Z 
o 0 1 

= [1 0 1] Z 

Since the first column of CP corresponding to the Jordon block of eigen value A = 2 is 
zero, the system is not observable. 

Y = [1 0 0] X 

(i) Kalman's test 

The observability matrix, 

Qo = [~A 1 = [~ ~ ~l 
CA2 1 3 6 

Since the rank of Qo is 2, the system is not observable. 
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(d) 

(ii) Gilbert's test 

The modal matrix for the system is, 

[
1 0 1] 

P = 0 2 1 

o -1 0 

The Jordon form of the system is 

[
I '0 0] Z= Oi2~0 z 

L _ + _ 
o 0 ,2 

[1 _021 ~1] Y= [1 0 0] ~ 

= [1 0 0] Z 
Since two Jordon blocks correspond to the same eigen value A = 2, the system is not 

observable. 

x=[~ 
0 

~] X Y= [~ 0 ~] X 2 

0 

(i) Kalman's test 

The observability matrix, 

0 1 

0 0 

1 0 5 
Qo = 

0 2 

1 0 17 

0 4 5 

The rank of Qo is 3 and hence the system is observable. 

(ii) Gilbert's test 

The modal matrix P and the Jordon form of the equations are, 

[
1 0 1] 

P = 0 1 1 

o 0 1 
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Z~[~ 
0 

~l z 
and 2 

0 

Y= [~ 0 ~l [~ 
0 

:Jz 
0 

= [~ o 2] 
lIZ 

Since none of the columns ofY contain all zero elements, and the eigenvalues of A are 
distinct, the system is observable. 

9.8.3 Duality Principle 

Kalman has introduced the duality principle to establish the relationship between controllability and 
observability. 

Consider system 1, 

X =AX+Bu 

Y=CX 

and its dual defined by system 2, 

Z =A* Z+C* V 

W=B*Z 

where A*, B* and C* are conjugate transpose of A, B and C respectively. 

The duality principle states that, 

(i) if the pair (A, B) is controllable in system I, the pair (A*, B*) is observable in its dual 
system 2. 

and (ii) if the pair (A, C) is observable in system 1, the pair (A* C*) is controllable in its dual 
system 2. 
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Problems 

9.1 Obtain the state space representation of the electrical system shown in Fig. P 9.1. 

2n 

+ 
+ 

v IF 

Fig. P.1 

Take 

v=u and 

9.2 Obtain the state space representation for the mechanical system shown in Fig. P 9.2 taking 
the displacement and velocity of the mass as state variables 

B 

x 

Fig. P.2 

9.3 The block diagram ofa position control system is shown in Fig. P 9.3. Obtain the state space 
representation of the system. 

Fig. P.3 

Choose the state variables as 
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9.4 Obtain the state space representation of the system shown in Fig. P 9.4. 

Take c = xl' C = x2 and m = x3 

u 10 m 

s+4 S2 +s+1 

Fig.P.4 

9.5 Obtain the state space representation in, 

(i) Companion form or Bush's form 

(li) Diagonal/Jordon form 

for the following systems. 

(a) y + 9 x + 23 x + 15 = u 

(b) Y + 9 x + 23 x + 15 = ti - 2 U + 4u 

9.6 Obtain the state space representation in, 

(i) Phase variable form and 

(ii) Jordon's form 

for the systems whose transfer functions are given by, 

s+1 
(a) s(s + 4)(s + 5) 

(b) s+5 
(s + 1)2(S + 4) 

9.7 Obtain the transfer functions of the following systems. 

C(s) 

(c) 
10 

(s + 1)3 

1. X = [~ ~ ~j X + [~j u 
-2 -3 -4 1 

2. X = [~ ~ ~j X + [~j u 
-4 -6 -8 1 

y = [1 0 0] X Y = [-2 4 0] X + 2u 

3. X = n -~ J X+ [~j u 

y = [-1 2 4] X 
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9.8 Find the transfer function of the systems given below. 

2. X~[! -; ~]x+[_~]u 
y = [1 0] X y = [1 1 -1] X 

9.9 Transform the following matrices into Diagonal/Jordon form representations. 

[

0 1 

(i) A = 0 0 

6 5 

[

-2 

(iii) A = - ~ 

(ii) 

(iv) 

(vi) 

A= [~ ~ ~] 
-1 -3 -3 

A= [-~ -~ ~] 
1 -1 -2 

-1 0] 
-2 0 

o -1 

9.10 Find the state transition matrix for the following systems. 

(i) X = [~ ~] X (ii) X = [ 1 0 ] X 
-1 -2 

(iii) X = [~ ~ ~] X 
-2 -5 -4 

9.11 Obtain the solution of the state equation 

X = [~ _~] X + [~] u 

Xo = [1 l]T and u(t) is a unit step input. 

375 

9.12 Obtain the Jordon's cononical form of the following system and obtain its solution for a step 
input 

X = [~~ ~] X + [~] u 
6 5 -2 1 

X(o) = [1 0 O]T 
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9.13 Determine whether the following systems are completely state controllable and observable 
using (i) Kalman's test and (ii) Gilbert's test. 

Y = [1 1 0] X 

Y=[~ 0 ~]X 

(e) X = [~ ~ _~] X {l Y=[O 1 -l]X 

Jx+Hu (d) X = [~ ~ 
-1 -3 

Y = [0 1 -1] X 

9.14 Determine output controllability of system in problem P. 9 .13 (b). 

-djl-



Answers to Problems 

Chapter 2 

2.1 [ 
s(L-R2C) 1 

(a) 
(LS + R)(RCS + 1) 

(b) 
s(2s2 + 2s + 1) 

(2s4 + 14s3 + 232s + 20s + 8) 

2.2 (a) K\ 
M\M2s4 + M\B2s3 + (K\M! + K2M\ + K\M2)S2 + B2K\s + K\K2 

MS2 

(b) MS2 + Bs+ K 
(c) 

K 
2.3 T(s) = s(J S2 + B ) 

eq eq 

_ (N4)2 (N4)2 (N2)2 
Beq-BL +B2 N3 +Bl N3 N\ 

2.5 
Kf 
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2.6 

2.7 

2.8 

2.9 

2.10 

2.11 

2.12 

2.13 

2.14 

R 
(i) 

RCS+l 

elm = -,:---------:;-

Y[ L s 2 + ~ S + 1] 
g Ay 

[RIR2CIC2S2 + (R2C 2 + RICI + R IC2)S + 1] 

10.87KA 

S2 +54.35KKA +10.87K A 

15 

S2 + 6.5s + 15 

Control Systems 

G IG 2G 3 +G4 , ~= 1 +GI G2 H I +G2 G3 H2 +GI G2G3+G4-G4G2H2HI 
~ 

1. 

2. 

3. 

(a) 

1 + G 2H 2 + G2G3H3 + G IG 2H 2 + G IG 2G 3HI 

G IG 2G 3(1+G 4 ) 

G I (G2 + G 3)(l-G4H 2) 

I+GI(G 2 +G3)HIH 2 
PI = G I G2 G3 G4 Gs P2 = G I G2 G6 Gs 

LI =-GI HI L2 =-GI G2 

L3 =-G3 H3 L4 =-G4 H4 

Ls =-Gs Hs L6 =-GI G2 G3 

L7=G6 H3 H4 

~ = 1 - (LI + L2 + L3 + L4 + Ls + L6 + L7) + LI L3 + LI L4 + LI Ls + L2 L4 + L2 Ls 
+ L3 Ls + LI L7 - LI L3 Ls 

~I = ~2 = 1 

PI~I +P2~2 T = -'----=-------=---=-
~ 

(b) G IG 2G 3G 4 (1 + G 7G gH2) + G 4G 6G 7G g(l + G 2G 3H I) + GIG2G7GgG9 

1 + G 2G 3HI + G 7GsH2 



Answers to Problems 

2.15 
4s3 + 2S2 + 3s + 2 

8s4 + 17s3 + 19s2 + ISs +6 

2.17 (a) 60 V, 190V (b) 0.1 

(c) 197.14V (d) 81.14V 

2.18 S~ = 0.0125 S1 = 5.12 Si = 0.128 

2.19 0.089 

1.367 
2.20 

s(0.0118s+1) 

Chapter 3 

3.1 T(s) = S2 + 225.2s + 15K
A 

0=0.75 

ron = 150 rad/sec 

tp = 0.0317 s 

~ = 2.84% ts = 0.0356 sec 

3.2 (i) Mp = 10.07% ~ = 0.6s ts = 1.043 s 

(ii) KA =7 

(iii) KA = 23.64 

3.3 T = 1.44 sec 

3.4 (i) ron = 3.16 rad/sec 

(ii) 0.1792 

K = 1.06 

0=0.316 

3.5 (i) 0 = 0.316 

(ii) Kr= 1.212 

(iii) ~ = 2.6 

3.6 K = 2.95 

3.7 K= 16 

3.8 
1 

(i) 0, 3"' 00 

(iii) 0, 0, 0.01 

COn = 3.16 rad/sec 

ess = 0.4424 rad 

KA = 18 

a = 0.47 sec 

a = 0.175 

.. ) 1 
(11 11' 00, 00, 

(iv) 0, 0.1, 00, 

9css = 0.2 rad 

c(t) = 1 - 1.25 e-2
.4t sin (3.2t + 53.13°) 

379 
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3.9 K=23 a=0.163 

3.10 esit) = 0.54625 + 1.075t + 0.75r 

3.11 (a) ess(t) = O.Olt + 0.0009 (b) ess<t) = O.Olt + 0.0209 

Chapter 4 

4.1 (a) al' 8,z, > 0 

(b) ai' 8,z, a3, > 0 ai' 8,z, > a3 

(c) ai' ~, a3, a4, > 0 al 8,z, > a3, a4 < a3 

(a l a 2 - a3 ) 

a 2 
I 

4.2 (a) -2.5 ±j2.784 

(b) -2, -2 

(c) -1, -3, --6 

4.3 (a) 1±j1,-1±j1 

(b) -4.495, 0.2475 ± j 1.471 

(c) 0.1789, -11.179 

4.4 (a) Stable 

(b) Stable 

(c) Two poles in RHS 

(d) Four roots on jro-axis 

(e) Two roots in RHS 

4.5 (a) k> 0.303 

(b) No real value ofk 

(c) > 1 

4.6 0< k < 99 

4.7 (a) equal 

(b) less 

(c) greater 

4.8 -1 ±j2; -2 ±j1 



Answers to Problems 

Chapter 5 

5.1 (i) (a) -5 (b) 60, 180, -60 (c) -1.79 (d) K = 660 (e) 0) = 8.63 rad/sec 

(ii) (a) -7 (b) 90, -90 (c) -7.37 

(iii) (a) -1 (b) +60, 180, -60 (d) 48.6° (e) K = 8, 0) = 2 rad/sec 

(iv) (b) 180° (c) 0.414, -2.414 (e) K = 1,0) = 1.225 rad/sec 

5.2 K = 19.05 0 = 0.189, O)d = 2.6 rad/sec ts = 7.986 sec 

Closed loop poles for K = 19.05: -5, -0.5 ±j 2.6 

5.3 K = 2.96 

5.4 -5.52, -43.8°, -2.5 

5.5 1. Stable for K < 30 ; root locus bends towards RHP 

2. Stable for K < 70.68 ; bends towars RHP 

5.6 (i) Root locus bends towards LHP, breakaway point moves to the left. 

Original system is stable for K < 42, Modified system is stable for K > 0 

(ii) System is stable for all positive values of K 

5.7 K=4 s=-I±j1,-3±jl 

K = 64 O)n = 2 rad/sec 

5.8 (a) -385,60°, 180°, -60° 

(b) 60°, -60° 

(c) Kl = 1.1 x 106
, 0)1 = 16.6 rad/sec 

5.10 Root locus bends towards LHP 

Stable for K < 22.75 

Chapter 6 

6.1 (i) Mr = 1.04 O)r = 2.116 rad/sec 

(ii) Mr= 1.0 O)r = 0 

(iii) ~= 1.0 O)r = 0 

(iv) Mr = 1.364 O)r = 6.6 rad/sec 

O)b = 4.592 rad/sec 

O)b = 4 rad/sec 

O)b = 8.7 rad/sec 

O)b = 11 rad/sec 
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6.2 (i) 4.1 rad/sec 

(ii) 0.75 rad/sec 

6.3 (i) K=200 

(ii) K=398 

6.4 (a) 
10(0.5s + 1) 

s(0.02s + 1) 

O.4s 
(b) 

(0.2s + 1)(0.05s + 1)(0.005s + 1) 

6.5 
10(s + 2) 

s(s + l)(s + 10) 

6.6 K= 14.91 

~ = 14.62 

6.7 ~= 1.5 

Poles = -2.11 ±j5.53 

6.8 (a) Does not cross 

(b) ro = 2.236 rad/sec, 

(c) ro = 4.795 rad/sec, 

(d) ro = 37.42 rad/sec, 

6.9 ro = 0.2 rad/sec 

Chapter 7 

7.1 (a) 2 roots in RHP 

(b) 2 roots on jro-axis 

(c) 2 roots in RHP 

't = 0.0616 s 

ts = 0.4924 s 

ror = 5.1 rad/sec 

IGI = 0.077 

IGI = 0.11 

IGI = 2.38 x 10-3 

jGGro) = 93.44° 

Control Systems 

7.2 At ro = 0 and ro = 00 the curve is rotated by 90° in clockwise direction for addition of every 
pole at origin. 

7.3 The behaviour at ro = 0 is not altered but at ro = 00, the curve is rotated by 90° in clockwise 
direction for every non zero pole added. 



Answers to Problems 

7.4 1m 

GH-plane 

Re 

7.5 (a) (b) 

7.7 K = 0.7, The system becomes more stable, K = 1.08 

7.8 

7.9 

7.10 

(a) Unstable 

GM = 9.54db 4>pm = 32.6° 

(a) GM = 28 db .h = 76° 'l'pm 

(b) K = 4.45 

(c) K=4.33 

7.12 ~ = 1.78 ror = 8 rad/sec 

Chapter 8 

8.1 (i) 4> = 40° pm 

(li) roge = 0.5 rad/sec 

(iii) eff=0.2 

(iv) Gain margin = 11 db 

(b) Stable 

rob = 10 rad/sec 
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Chapter 9 

1 1 
0 -- --

2 2 -
1 1 

2 
9.1 x= -- - x+ 0 u 

2 2 
y = [0 0 1] X 

0 
1 1 0 - --
4 4 

9.2 x=l-: d x+ [~lu 
9.3 x=[ -K;OK, -[f)'JK3 ] X+ [Kl;} 

9.4 x=[-~ -~ ~] x+ [~] u Y=[1 0 O]X 
-10 0 -4 10 

9.5 (a) (i) A = [~ ~ ~l B = [~] C = [1 1 0] 
-15 -23 -9 1 

(ti) A=[-~ -~ _~] B=[:] c=[i ~ iJ 

(b) (i) A = [~ ~ ~] B = [~] C = [4 -2 1] 
-15 -23 -9 1 

(ii) A = [-~ - ~~] B = [~] C = [i -~ 9 3:] 
o 0 -5 1 
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9.6 (a) (i) A~ [~ 0 ~;J B = [~! c = [1 1 0] 

-20 

A= [~ 
0 

J B ~ [:1 (ii) -4 C = [2
1
0 

3 
-54] -

0 
4 

(b) (i) A~ [ ~ 0 J B=m C = [0 1 0] 

-2 -5 

[~I ~~J B = [:] (ii) A= ~ -1 C= [j -1 ~] -

0 
9 

(c) (i) A= [ ~ 0 J B=m C = [10 0 0] 
-1 -3 

[~I J B~m (ii) A= ~ -1 C = [10 0 0] 

0 

2s3 +16s2 +16s+6 3s2 +10s+6 
9.7 1. 

S3 +4S2 +3s+2 
2. 

S3 +8s2 +6s+4 
3. 

(s + 1)(s + 2i 

9.8 (i) 
s-6 

s(s - 5) 
fii) 

2 

s+1 
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9.9 (i) D= r-~ ~ ~] 
o 0 -3 

(ii) J = r-~ -1 ~] 
o 0-1 

9.10 

9.11 

9.12 

9.13 

9.14 

(ill) r~ -1 _~] (iv) r-~ -1 ~ l 
o 0 -2 J 

r
-1 

0 001 
(v) A= 00 -01 

-2J r
-1 1 0] 

(vi) A = 0 -1 0 

o 0-1 

(i) 

(ii) 

[ e' 
tet ~,l 

[(1 + t)e-' 
-te-t 

te-
t 1 

(1- t)e-t 

2e-2t -2e-t +3te-t 

_4e-2t +5e-t -3te-t 

8e-2t -8e-t +3te-t 

-1 7 -t 7 2t 1 - 3t -+-e +-e +-e 
6 6 30 6 
-7 -t 7 2t 1 -3t -e +-e --e 
6 15 2 

X(t) = 

(a) 

(b) 

(c) 

(d) 

7 -t 14 2t 3 -3t -e +-e +-e 
6 15 2 

not controllable, not observable 

controllable, not observable 

not controllable, observable 

controllable, observable 

Output controllable 

-jJ-

Control Systems 
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Chapter 1 

1. Which one of the following is open loop? 
(a) The respiratory system of man 
(b) A system for controlling the movement of the slide of a copying milling machine 
(c) A thermostatic control 
(d) Traffic light control 

2. Consider the following statements regarding a linear system y = f(x) : 
1. f (xl + x2) = f (Xl) + f (x2). 

2. f [x(t + T)] = f [x(t)] + f [x(T)]. 
3. f (Kx) = Kf (x). 

Of these statements 
(a) 1, 2 and 3 are correct 
(c) 3 alone is correct 

(b) 1 and 2 are correct 
(d) 1 and 3 are correct. 

3. Which one of the following is an example of open-loop system? 
(a) A windscreen wiper 
(b) Aqualung 
(c) Respiratory system of an animal 
(d) A system for controlling Anti-rocket-missiles 

4. When a human being tries to approach an object, his brain acts as 
(a) an error measuring device (b) a controller 
(c) an actuator (d) anamplifier 

5. In a continuous data system 
(a) data may be a continuous function of time at all points in the system 
(b) data is necessarily a continuous function of time at all points in the system 
(c) data is continuous at the input and output parts of the system but not necessarily 

during intermediate processing of the data. 
(d) Only the reference signal is a continuous function of time. 

6. As compared to a closed-loop system, an open-loop system is 
(a) more stable as well as more accurate 
(b) less stable as well as less accurate 
(c) more stable but less accurate 
(d) less stable but more accurate 

7. The principles of homogeneity and superposition are applied to 
(a) linear time variant systems (b) non-linear time variant systems 
(c) linear time invariant systems (d) non-linear time invariant systems 
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Chapter 2 

1. For block diagram shown in Fig. C(s)/R(s) is given by 

2. 

(b) 
G, G 2 G3 + 

l+G, G 2 G3 H, H2 R(s) C(s) 

(c) 
G, G2 G3 

l+G, G 2 G3H, +G, G2 G3 H2 

(d) 
G, G 2 G3 

l+G, G 2 G3H, 

d2y dy du 
The transfer function of the system described by dt 2 + dt = dt + 2u with 'u' as input 

and 'y' as output is 

(a) (s+2) 
(S2 + s) 

(s + 1) 
(b) (S2 +s) 

2 
(c) 

(S2 + s) 

3. Feedback control systems are 

(a) Insensitive to both forward-and feedback-path parameter changes 

(b) Less sensitive to feedback-path parameter changes than to forward-path parameter 
changes 

(c) less sensitive to forward-path parameter changes than to feedback-path parameter 
changes. 

(d) equally sensitive to forward and feedback-path parameter changes. 

4. A system is represented by the block diagram given in the figure. 

Which one of the following represents the input-output relationship of the above diagram 

(a) R(s) ~1(GIG2)1~ C(s) 

(b) R(s) ~I(GI + G2)1~ C(s) 

(c) R(s) ~ 11 + G1 + GIG21~ C(s) 

(d) R(s) ~Il + G2 + GIG21~ C(s) 

R(s) C(s) 

1~ 
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5. Consider a simple mass-spring-friction system as given in the figure. 

6. 

7. 

KI , ~ - Spring Constants, f - Friction 

M - Mass, F - Force, x - Displacement 

The transfer function Xes) of the given system will be 
F(s) 

(a) 
MS2 +fs+K,.K2 

(b) 
MS2 +fs+K, +K2 

(c) (d) K2 

MS2 +fs+ K,.K2 MS2+fs+K, 
K, +K2 

10 
In the following block diagram, GI = 10/s, G2 = (s + 1) , HI = S + 3 and H2 = 1. The 

overall transfer function CIR is given by 

(a) 
10 

11s2 +31s+10 
C 

100 
(b) 

11s2 +31s+100 

100 H2 
(c) 

11s2 + 31s + 10 

100 
(d) 

11s2 + 31s 

The signal flow of a system is shown in the given figure. In this graph, the number of 
three non-touching loops is 

(c) 2 (d) 3 

R(s) ... ---+@--...-~tt----t--+-_-e. C(s) 

(a) zero (b) 
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8. 

9. 

10. 

11. 

The sum of products of two non-touching loops in the following signal flow graph is 

(a) S3 t32 t44 t44 

(b) S3 t32 + t34 t43 
t12 1 

xl l<t; 

( c) S3 t32 + t34 t43 + t44 ":2 Xs 

(d) S4 t43 t32 + t44 
t25 

The closed-loop gain of the system in the given figure is 

9 6 
R(,) 1 :J 

C(s) (a) (b) -
5 5 

6 9 
(c) 

5 
(d) 

5 

The response CCt) of a system to an input ret) is given by the following differential 

. d2CCt) dCCt) 
equatIOn: --+3-- + 5CCt) = 5 ret) 

dt2 dt 

The transfer function of the system is given by 

5 
(a) G(s) = 

S2 +3s+5 
(b) G(s) = 

s2+3s+5 

3s s+3 
(c) G(s) = 

S2 +3s+5 
(d) 

S2 +3s+5 

For the RC circuit shown in the given figure, Vi and Vo are the input and output of the 
system respectively. The block diagram of the system is represented by 

R 

r-;'\VWvc I 
~ I 

System 

v~ 
VoCs) V

L 
Vo(s) • • 

(a) (b) 

~ 
Vo(s) 

V~ 
VO<s) 

I 

• 

I 

• llR cs 

(c) 

Vj(s) -

(d) 
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12. Given : ~ = 99; s = j 1 rad/s, the sensitivity of the closed-loop system (shown in the 
given figure) to variatiQ11 in parameter K is approximately 

(a) 0.01 (b) 0.1 Er (s) KI(lOs + 1) 
0 • q • ow(s) 

(c) 1.0 (d) 10 1 1 

13. The transfer function CIR of the system shown in the figure is : 

(a) 
GI G2 H2 

HI(I+GI G2 H2) 

GI H2 R 
(b) 

HI(I+GI G2 HJ C 

(c) 
G 2 H2 

HI(I+GI G2 HJ G2 

(d) 
G2 HI 

H2(I+GI G2 H2) 

14. Laplace transform of the output response of a linear system is the system transfer 

function when the input is 

(a) a step signal (b) a ramp signal 

(c) an inpulse signal (d) a sinusoidal signal 

15. A simple electric water heater is shown in the given figure. The system can be modelled 

by 
Air at TOAC 

Insulation 
Water out 

Heater 

(a) a first order differential equation (b) a second order differential equation 

(c) a third order differential equation (d) an algebraic equation 
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16. Which of the following is used in digital position control systems 

(a) Stepper motor (b) AC servo motor 

(c) Synchro Cd) DC servo motOl 

17. Four speed-torque curves (labelled I, II, III and IV) are shown in the given figure. That 
of an ac servomotor will be as in the curve tabelled 

Torque 

(a) 

(b) II 

(c) III 

(d) N Speed 

18. Match List I with List II and select the correct answer using the codes given below the 
lists. 

List I List II 

A. Hydraulic actuator 1. Linear device 

B. Flapper valve 2. AC servo systems 

C. Potentiometer error detector 3. Large power to weight ratio 

D. Dumb bell rotor 4. Pneumatic systems 

Codes: 

A B C D 

(a) 4 3 2 

(b) 3 4 2 

(c) 3 4 2 

Cd) 4 3 1 2 

19. When the signal flow graph is as shown in the figure, the overall transfer function of the 
systems, will be 

C 
(a) - =G 

Q-Hl y-H2 
R 

G 
C G • (b) -=-- R C 
R 1+H2 

(c) 
C G 

(d) 
C G 

R = (1+H1Xl+H2) 
= 

R l+Hl +H2 
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20. The block diagram shown in Fig. 1 is equivalent to 

Xl 0 ~ 

~ 
~C 

x2 

~C 'X2~ 
[QJ ~C (a) (b) 

x2 

X2~ 
[QJ ~C Xl C 

(c) (d) 
x2 

21. Consider the system shown in figure-I and figure-II. If the forward path gain is reduced 
by 10% in each system, then the variation in C1 and C2 will be respectively 

(a) 10% and 10% c l 

(b) 2% and 10% 
Figure I 

'r .. C2 

I 

(c) 5% and 1% 

(d) 10% and 1% Figure II 

22. The block diagrams shown in figure-I and figure-II are equivalent if 'X' (in figure-II) is 
equal to 

(a) 1 
R(s) 

(b) 2 
R(s) {lli] C(s) 

(c) s + 1 
.. 

s+l 

C(s) 

(d) s+2 

23. The signal flow graph shown in the given figure has 

(a) three forward paths and two non-touching loops C 

(b) three forward paths and two loops R 

(c) two forward paths and two non-touching loops 

(b) two forward paths and three loops 
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24. In the system shown in the given figure, to eliminate the effect of disturbance D(s) on 
C(s), the transfer function Gd (s) should be 

(s + 10) 
(a) 10 

10 
(c) 

s + 10 

(b) s (s + 10) 
10 

10 
(d) s(s+10) 

25. Match List-I (Component) with List-II (Transfer functions) and select the correct answer 
using the codes given below the lists : 

26. 

R(s) 

• 

List-J List-II 

A. ac servo motor 1. 
K 

s(l + s 'tm ) 

B. Field controlled dc servo motor 2. 
K 

s(1 + s 'te )(l +s 'tm) 

C. Tacho generator 3. Ks 

K 

1 + S't 
D. Integrating gyro 4. 

Codes: 
(a) A B C D (b) A B C D 

1 2 3 4 1 2 4 3 

(c) A B C D (d) A B C D 

2 3 4 2 4 3 

A closed-loop system is shown in the given figure. The noise transfer function Cn (s) 
N(s) 

[Cn (s) = output corresponding to noise input N(s)] is approximately 

1 
(a) G(s)HJ(s) for IGI (s) HI (s) H2 (s)I« 1 

1 
(b) - -- for IGI (s) HI (s) ~ (s)1 » 1 

HJ(s) 

(c) - HJ(s)H2(S) for IGI (s) HI (s) H2 (s)I» 1 

1 
(d) G(s)HJ (S)H2(S) for IGI (s) HI (s) H2 (s)I« 1 



396 MCQs from Competitive Examinations 

27. A signal flow graph is shown in the given figure. The number of forward paths M and 
the number of individual loops P for this signal flow graph would be 

(a) M = 4 and P = 3 

(b) M = 6 and P = 3 

( c ) M = 4 and P = 6 

(d) M=6andP=6 

ret) 

28. The mechanical system is shown in the given figure 

The system is described as 

(a) M d
2

Yl (t) + B dYI (t) = k[ (t) - (t)] 
dt2 dt Y2 YI 

(b) M d
2

Y2(t) + B dY2(t) = k[y (t) - y (t)] 
dt2 dt 2 I 

(c) M d
2
Yl(t) + B = k[YI(t) - Y2(t)] 
dt2 

(d) M d
2

Y2(t) + B dY2(t) = k[y (t) - Y (t)J 
dt2 dt I 2 

29. A synchro transmitter consists of a 

c(t) 

(a) salient pole rotor winding excited by an ac supply and a three-phase balanced stator 

winding 

(b) three-phase balanced stator winding excited by a three-phase balanced ac signal 

and rotor connected to a dc voltage source 

(c) salient pole rotor winding excited by a dc signal 

(d) cylindrical rotor winding and a stepped stator excited by pulses 

30. The torque-speed characteristic of two-phase induction motor is largely affected by 

(a) voltage 
R 

(b) - and speed 
X 

X 
(c) R (d) supply voltage frequency 
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31. Consider the following statements regarding A.C. servometer : 

1. The torque-speed curve has negative slope. 

2. It is sensitive to noise. 

3. The rotor has high resistance and low inertia 

4. It has slow acceleration. 

Which of the following are the characteristic of A.C. servomotor as control component? 

(a) 1 and 2 (b) 2 and 3 (c) 1 and 3 (d) 2and4 

32. Which of the following are the characteristics of closed-loop systems? 

1 . It does not compensate for disturbances. 

2. It reduces the sensitivity of plant-parameter variations. 

3. It does not involve output measurements. 

4. It has the ability to control the system transient response. 

Select the correct answer using the codes given below: 

(a) 1 and 4 (b) 2 and 4 (c) 1 and 3 (d) 2 and 3 

33. The number of forward paths and the number of non-touching loop pairs for the signal 

flow graph given in the figure are, respectively, 

(a) 1, 3 b 

(b) 3, 2 

(c) 3, 1 

(d) 2,4 

R(s) a 

h 

34. From the signal flow graph shown in the figure, the value of x6 is : 

(a) de (ax\ + bX2 + cx3) XI 

(b) (a + b + c) (x\ + x2 + x3) (d + e) 

(c) (ax\ + bX2 + cx3) (d + e) 

(d) abcde (x\ + x2 + x3) 

g 

d 

35. From the figure shown, the transfer function of the signal flow graph is 

(a) ~ (b) ~ 
1- T22 I-TI2 XI Tl2 

0 • 
(c) ~ (d) 

T22 

1+ T22 1 +T12 

C(s) 

e 

T22 

CJ 
x2 
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36. A stepper motor 

(a) is a two phase induction motor 
(b) is a kind of rotating amplifier 

( c ) is an electromagnetic transducer commonly used to convert an angular position of 
a shaft into an electrical system 

(d) is an electromechanical device which-actuates a train of step angular (or linear) 
movements in response to a train of input pulses on one to one basis. 

37. Match List-I with List-II and select the correct answer by using the codes given below 
the lists: 

38. 

39. 

40. 

41. 

Codes: 

(a) A 
1 

(c) A 

3 

A. 

B. 

C. 

D. 

B 
2 

B 

2 

List-I 

Synchro 

Amplidyne 

Servo 

RC Network 

C 
3 
C 

4 

D 
4 

D 

l. 

2. 

3. 

4. 

(b) A 

4 
(d) A 

4 

List-II 

Amplifier 

Actuator 

Compensator 

Transducer 

B 
3 
B 

C 
2 

C 
2 

D 
1 

D 
3 

The open-loop transfer function ofa unity feedback control system is G(s) = ---;0-

(s + 2)2 

The closed-loop transfer function will have poles at 

(a) -2, -2 (b) -2, -1 (c) -2 ±jl (d) -2,2 

The signal flow diagram of a system is shown in the given figure. The number of 
forward paths and the number of pairs of non-touching loops are respectively 

(a) 3, 1 

(b) 3,2 

(c) 4,2 

(d) 2,4 

The ac motor used in servo applications is a 

6 

E 

9 

(a) single-phase induction motor (b) two-phase indl,lction motor 

(c) three-phase induction motor (d) synchronous motor 

A synchro transmitter-receiver unit is a 

(a) two-phase ac device 

( c ) dc device 

(b) 3-phase ac deVIce 

(d) single-phase ac voltage device 
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42. Match the control system components in List-I with their functions in List-II and select 
the correct answer using the codes given below the lists : 

List-I List-II 

A. Servo motor 1. Error detector 
B. AmpJidyne 2. Transducer 
C. Potentiometer 3. Actuator 
D. Flapper valve 4. Power amplifier 

Codes: 

(a) A B C D (b) A B C D 

3 1 2 4 3 4 2 

(c) A B C D (d) A B C D 

4 3 2 3 4 2 

43. An electromechanical device which actuates a train of step angular movements in response 
to a train of input pulses on one to one basis is 

(a) synchro control transformer (b) LVDT 

(c) stepper motor (d) ac tachogenerator 

44. For a two-phase servo motor which one of the following statements is not true? 

(a) The rotor diameter is small 

(b) The rotor resistance is low 

(c) The applied voltages are seldom balanced 

(d) The torque speed characteristics are linear 

45. Which one ofthe following transducers is used to obtain the output position in a position 
control system? 

(a) Strain Gauge (b) Loadcell (c) Synchro (d) Thermistor 

46. For the system shown in the given figure the transfer function X(s) is 
F(s) 

1 
(a) Ms2 +K (b) 

1" x(t) 
(c) 

Ms2 +1 

K 
(d) 

47. In case of synchro error detector, the electrical zero position of control-transformer is 
obtained when angular displacement between rotors is 

(a) zero (b) 45° (c) 90° (d) 180° 
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48. The transfer function T(s) of the system shown in the following figure is given by 

(a) T (s) = GI(S)G 2(s) 
1-G 2(s) 

b T (s) - G I (s) 
( ) - 1-GI(s)G

2
(s) 

(c) T (s) = Gz(s) 
1-GI(s)G 2(s) 

(d) T (s) = G 2 (s) 
1+GI(s)G 2 (s) 

C(s) 

C(s) 
T(s) = -­

R(s) 

49. In a two-phase ac servometer, the rotor has a resistance R and a reactance X. The 
torque-speed characteristic of the servomotor will be linear provided that 

50. 

51. 

52. 

X 
(a) -« 1 

R 

X 
(b) -» 1 

R 

x 
(c) - = 1 

R 

The C(s) for the system shown in the following block diagram is 
R(s) 

(a) 
GI (s) Gz (s) 

1 + GI (s)[G 2 (s) + HI (s)] 
R(s) 

(b) 
GI(S)G 2 (s) 

1 + G 2 (s)[GI (s) + HI (s)] 

(c) 
GI(s)+GZ(s) 

1 + G 2 (s)[G z (s) + HI (s)] 

(d) none of the above 

Which of the following can work as error detecting devices? 

1. A pair of potentiometers 2. A pair of synchros 

3. Ametadyne 4. A control transformer 

Select the correct answer using the codes given below: 

Codes: 

(a) 1,2 

(c) 1,3. 4 

(b) 2,3, 4 

(d) 1,2,4 

G 
The sensitivity SG M of a system with the transfer function M = -- is given by 

l+GH 

1 
(a) 1+GH 

l+GH 
(b) H 

l+G 
(c) H (d) H 
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53. The signal graph of a closed-loop system is shown in the figure, wherein T D represents 
the distrubanct: in the forward path : 

The effect of the disturbance can be reduced by 

(a) increasing G2 (s) 

(b) decreasing G2 (s) 

(c) increasing G1 (s) 

(d) decreasing G1 (s) 

R(s) 

-H(s) 

54. Which is the following relate to rational transfer function of a system? 

1. Ratio of Fourier transform of output to input with zero initial conditions 

2. Ratio of Laplace transform of output to input with zero initial conditions 

3. Laplace transform of system impulse response 

4. Laplace transform of system unit step response 

Select the correct answer using the codes given below codes: 

(a) 1and4 (b) 2and3 (c) 1and3 (d) 2and4 

C(s) 

55. The closed-loop system shown in the figure is subjected to a disturbance N(s). The 

transfer function C(s) is given by 
N(s) 

(a) GJ (s)G2 (s) 

l+GJ (s)G 2 (s)H(s) 

(b) 
GJ (s) 

l+GJ (s)H(s) 

(c) 
G2 (s) 

1-G2 (s)H(s)GJ(s) H(s) 

(d) G 2 (s) 

l+GJ (s)G 2 (s)H(s) 

56. Which of the following components can be used as a rotating amplifier in a control 
system? 

1. An amplidyne 2. A separatively excited dc generator 

3. A self-excited dc generator 4. A synchro. 

Select the correct answer using the codes given below 

Codes: 

(a) 3 and 4 (b) 1 and 2 (c) 1,2and3 (d) 1,2,3and4 
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57. The transfer function of the system shown in the given figure is : 

ABC 
(a) 0 I R = 1 + ABC 

A+B+C 
(b) O/R= ---­

l+AB+AC 

AB+AC 
(c) O/R= --­

ABC 

AB+AC 
(d) O/R= ---­

I+AB+AC 

58. A signal flow graph is shown in the following figure: 

Consider the following statements regarding the signal flow graph : 

1. There are three forward paths. 

2. There are three individual loops. 

3. There are three sets of two non-touching loops. 

Of these statements 

(a) 1, 2, and 3 are correct 

(b) 1 and 2 are correct b I 
xl 

"2 (c) 2 and 3 are correct 

(d) 1 and 3 are correct 

59. In the field-controlled motor, the entire damping comes from 

(a) the armature resistance (b) the back emf 

(c) the motor friction and load (d) field resistance 

I---T-.O 

60. Which of the following rotors are used in a two-phase ac servomotor? 

1. Solid iron motor 2. Squirrel cage rotor 3. Drag cup rotor 

Select the correct answer using the codes given below. 

Codes: 

(a) 1, 2 and 3 (b) 1 and 2 (c) 2and3 (d) 1 and 3 

61. For two phase a.c. servomotor, if the rotor's resistance and reactance are respectively 
R and X, its length and diameter are respectively Land D, then 

( a) X and ~ are both small 
R D 

(b) X is large but ~ is small 
R D 

( c ) X is small but ~ is large 
R D 

X L 
(d) - and - are both large 

R D 
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62. Consider the following statements relating to synchros : 

1. The rotor of the control transformer is either disc shaped or umbrella shaped. 

2. The rotor of the transmitter is so constructed as to have a low magnetic reluctance. 

3. Transmitter and control transformer pair is used as an error detector. 

Which of these statemens are correct ? 

(a) 1,2 and 3 (b) 1 and 2 (c) 2 and 3 (d) 1 and 3 

63. Consider the following servomotors: 

1. a.c. two-phase servomotor 2. d.c. servomotor 

3. Hydraulic servomotor 4. Pneumatic servomotor 

The motor which has highest power handling capacity is 

(a) 2 (b) 1 (c) 3 (d) 4 

64. Match List I (Functional components) with List II (Devices) and select the correct 

answer using the codes given below the Lists : 

List I List II 

A. Error detector 1. Three-phase FHP induction motor 

B. Servomotor 2. A pair of synchronous transmitter and 

control transformer 

C. Amplifier 3. Tachogenerator 

D. Feedback 4. Armature controlled FHP d.c. motor 

5. AmpJidyne 

Codes: 

(a) A B C D 

2 4 1 5 

(b) A B C D 

4 2 5 3 

(c) A B C D 

2 4 5 3 

(d) A B C D 

1 2 3 5 
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65. For the signal flow diagram shown in the given figure, the transmittance between "2 
and Xl is 

rs u efh 
(a) --+--

XI ~ I-st I-fg 

(b) 
rsu efh 
--+--
I-fg I-st 

(c) 
efh rs u 
--+--
I-ru I-eh 

(d) 
rst rsu f --+--

I-eh I-st 

66. Consider the mechanical system shown in the given figure. If the system is set into 
motion by unit impulse force, the equation of the resulting oscillation will be 

(a) x(t) = sin t 
x(t) 

(b) x(t) = .J2 sin t 

(c) 
1 . 

x(t) = "'2 SIn 2t 

(d) x(t) = .J2 t 

67. Which one of the following relations holds goods for the tachometer shown in the given 
figure? 

(a) V2 (s) = S ~ (j) (s) 

r 
9(5) 

(b) V2 (s) = ~ s2 e (s) C 
(c) V2 (s) = ~ s2 (j) (s) roes) 

(d) V2 (s) = ~s e (s) 
68. The unit step response ofa particular control system is given by c(t) = 1 - 10 e-t • Then 

its transfer function is 

(a) ~ 
s+1 

s-9 
(b) s + 1 

1-9s 
(c) s+1 (d) 

1-9s 

s (s + I) 
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69. 1. Transfer function can be obtained from the signal flow graph of the system 

2. Transfer function typically characterizes linear time variant systerrl 

3. Block diagram of the system can be obtained from its transfer function given the 
ratio of output to input in frequency domain of the system. 

4. Transfer function gives the ratio of output to input in frequency domain of the 
system. 

Which of the following is the correct combination about the four statements stated 
above. 

(a) only (1) and (2) are correct 

(c) only (3) and (4) are correct 

(b) only (2), (3) and (4) are correct 

(d) only (1), (2) and (4) are correct 

70. Which of the following is not valid in case of signal flow graph? 

(a) in signal flow graph signals travel along branches only in the marked direction 

(b) nodes are arranged from right to left in a sequence 

(c) signa flow graph is applicable to linear systems only 

(d) for signal flow graph, the algebraic equations must be in the form of cause and 
effect relationship. 

71. The sum of the gains of the feedback paths in the signal flow graph below is 

(a) af + be + cd + cbef + abcdef 

(b) af + be + cd + abef + bcde 

(c) af + be + cd + abef + abcdef 

(d) af+ be + cd 

72. The signal flow graph shown in the figure has 

2 

f e 

7 8 

(a) two forward paths, four loops and no non-touching loops 

(b) three forward paths, four loops and no non-touching loops 

(c) three forward paths, three loops and no non-touching loops 

(d) two forward paths, four loops and two non-touching loops 

d 
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73. Consider the system shown in the block diagram in the figure. The signal flow diagram 
of the system is best represented as 

(a) (b) -H, 

4 R(s) 1 2€W C(s) 
~. ~ ~ 

C(s) 1 G, _ 

-H2 
-H,H2 

H3 
(d) H3 

4 R(S)~~~4~ 
C(s) ~ G, q,) 

(c) 

H2 H 2H, 

74. The transfer function C(s)/R(s) of the system, whose block diagram is given below is 

C(s) 

(a) G,G2 (b) 
G,G2 

1 + G,H, + G2H2 - G,G2H,H2 1+G,H, +G2H2 +G,G 2H,H2 

(c) 
G,G2 (d) 

G, (1 +G2H2) + G2(l + G,H,) 

1 + G,H, + G2H2 1 + G,H, + G2H2 + G,G 2H,H2 
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7S. Which one of the four signal flow graphs shown in (a), (b), (c) and (d) represents the 
bock diagram shown in the given figure? 

R 

R G1 G2 1 C R ~d2 1 C 
(a) • ~ 

~ 
~ • (b) • ~ o G2 

• • 
G3 H2 G3 

R G1 1 G2 C R G1 G2 C (c) • ~ Y·~· • (d) • • 'C:Y 
• • 

G3 H2 

G3 

76. In the figure alongside, spring constant is K, viscous friction coefficient is B, mass is M 
and the system output motion is x(t) corresponding to input force F(t). Which of the 
following parameters relate to the above system? 

. I 
1. TIme constant = M K r--+ x(t) 

. ffi . B 2. Damping coe IClent = r;-;;-; 
2vKM 

F(t) 

B 

3. Natural frequency of oscillation = ~ 
Select the correct answer using the codes given below : 

Codes: 
(a) 1,2and3 (b) land2 (c) 2and3 (d) I and 2 

77. In the feedback system shown in the given figure, the noise component of output is 
given by (assume high loop gain at frequencies of interest) 

(a) -N(s) 
HI(s) 

(b) 

(d) 

N(s) 

HI(S) 

-N(s) 

R(s) G(s) C(s) 

N(s) 
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78. Consider the following statements regarding the advantages of closed-loop negative 

feedback control-systems over open-loop systems : 

1. The overall reliability of the closed-loop systems is more than that of open-loop 

system. 

2. The transient response in the closed-loop system decays more quickly than in open­

loop system. 

3. In an open-loop system, closing of the loop increases the overall gain of the system. 

4. In the closed-loop system, the effect of variation of component parameters on its 

performance is reduced. 

Of these statements : 

(a) 1 and 3 are correct 

( c ) 2 and 4 are correct 

(b) 1 and 2 are correct 

(d) 3 and 4 are correct 

79. Match List I with List II and select the correct answer using the codes given below the 

lists: 

List I (Unit) List II (Type of rotor) 

A. Synchro transmitter 1. Dumb-bell rotor 

B. Control Transformer 2. Drag-cup rotor 

C. A.C. Servo-motor 3. Cylindrical rotor 

D. Stepper motor 4. Toothed rotor 

5. Phase wound rotor 

Codes: 

(a) A B C D (b) A B C D 

1 3 2 4 1 5 3 2 

(c) A B C D (d) A B C D 

2 4 3 3 2 1 5 

80. In the signal flow graph shown in the figure, the value of the CIR ratio is 

28 40 
5 

(a) (b) -

W 57 57 1 
Ro • • oC 

1 

(c) 
40 

(d) 
28 

81 81 -2 
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81. Consider the following statements: 

I. The effect of feedback is to reduce the system error. 

2. Feedback increases the gain of the system in one frequency range but decreases in 
another. 

3. Feedback can cause a system that is originally stable to become unstable. 

(a) 1,2and3 (b) 1 and 2 (c) 2 and 3 (d) 1 and 3 

82. Select the correct transfer function Vo(s) from the following, for the given system, 
VI(S) 

s 
(a) 2(s2 + s + I) (b) 2(s+li 

s 
(c) 2S2 + 2s + 1 (d) 

2S2 + 2s+ 1 

83. Consider a control system shown in the given figure. For a slight variation in G, the ratio 
of open-loop sensitivity to closed-pool-sensitivity will be given by 

(a) 1 : (1 + GH) 

~ ~') (b) 1 : (1 + GHti 

(c) 1 : (1- GH) 

(d) 1: (1 - GHtl 

84. Consider the following statements relating to synchros : 

1. The rotor of the control transformer is cylindrical. 

2. The rotor of the transmitter is so constructed as to have a low magnetic reluctance. 

3. Transmitter and control transformer pair is used as an error detector. 

Which of these statemens are correct ? 

(a) 1,2 and 3 (b) 1 and 2 (c) 2and3 (d) 1 and 3 
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Chapter 3 

1. Match List (transfer functions) with List II (impulse response) and select the correct 
answer using the codes given below the lists : 

List I List II 

A. 
1 

1. 
s(s + 1) 

B. 
(s + 1)2 

C. 
s(s+I)+1 

3. 4. 

D. 
1 

S2 + 1 

Codes: 

(a) A B C D lb) A B C D 

2 4 3 2 4 3 

(c) A B C D (d) A B C D 

2 1 3 4 1 2 3 4 

2. The unit-impulse response of a unity-feedback system is given by 

c (t) = -te-t + 2e-t, (t ~ 0) The open-loop transfer function is equal to 

s+1 2s+1 s+2 s+1 
(a) 

(s + 2)2 
(b) 

S2 
(c) 

(s + 1)2 
(d) 7 

3. Consider the unit-step response of a unity-feedback control system whose open-loop 

1 
transfer function is G (s) = s(s + 1) . The maximum overshoot is equal to 

(a) 1.143 (b) 0.153 (c) 0.163 (d) 0.173 

4. For a feedback control system of type 2, the steady state error for a ramp input is 

(a) infinite (b) constant (c) zero (d) indeterminate 

S. The closed-loop transfer function of a control system is given by C (s) = _1_. For the 
R(s) l+s 

input ret) = sin t, the steady state value of c (t) is equal to 

1 
(a) J2 cos t (b) 1 (c) _1_ sin t 

J2 
1 . ( 1t) (d) J2 SIn t-"4 
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6. F or the system shown in figure with a damping ratio ~ of 0.7 and an undamped natural 

frequency OJn of 4 rad/sec; the values of K and a are 

(a) K = 4, a = 0.35 

(b) K = 8, a = 0.455 

(c) K = 16, a = 0.225 

(d) K = 64, a = 0.9 

C(s) 

7. A unity feedback system has open-loop transfer function O(s). The steady-state error 
is zero for 

(a) step input and type-l O( s) 

(c) step input and type-O O(s) 

(b) ramp input and type-l O(s) 

(d) ramp input and type-O O(s) 

8. A linear time-invariant system initially at rest, when subjected to a unit-step input, gives 
a response yet) = te-t, t> O. The transfer function of the system is, 

1 
(a) (s+l)2 

1 
(b) 

s (s + 1)2 

s 
(c) (s+l)2 

1 
(d) s(s+l) 

9. A unity feedback system has open-loop transfer function O(s) = {25/[s (s+6)]). The 
peak overshoot in the step-input response of the system is approximately equal to 

(a) 5% (b) 10% (c) 15% (d) 20% 

10. Introduction of integral action in the forward path of a unity feedback system results in a 

(a) Marginally stable system (b) System with no steady state error 

(c) System with increased stability margin (d) System with better speed of response 

11. For a unit step input, a system with forward path transfer function O(s) = 2~ and 
s 

feedback path transfer function 

H(s) = (s + 5), has a steady state output of 

(a) 20 (b) 5 (c) 0.2 (d) zero 

12. Consider a system shown in the given figure: 

U(s) O~----l[±]f-----O C(s) 

If the system is disturbed so that c(O) = I, then c(t) for a unit step input will be 

(a) 1 + t (b) 1 - t (c) 1 + 2t (d) 1 - 2t 
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13. What will be the closed-loop transfer function of a unity feedback control system whose 

14. 

step response is given by c(t) = k[1 - 1.66 e-8t sin (6t + 37°)]? 

lOOk 
(a) S2 + 16s + 100 

10 
(b) S2 + 16s + 100 

k 
(c) S2 + 16s + 100 

10k 
(d) S2 +8s+100 

K 
The transfer function of a control system is given as T(s) = ---­

s2+4s+K 

where K is the gain of the system in radians/Amp. 

For this system to be critically damped, the value ofK should be 

(a) 1 (b) 2 (c) 3 (d) 4 

15. A linear system, initially at rest, is subject to an input signia r(t) = 1 - e-t (t ~ 0) 

The response of the system for t > 0 is given by c(t) = 1 - e-2t 

The transfer function of the system is 

(s+ 2) 
(a) (s + 1) 

(b) (s + 1) 
(s + 2) 

(c) 2(s + 1) 
(s + 2) 

l(s + 1) 
(d) 2(s + 2) 

16. If the time response of a system is given by the following equation 

y(t) = 5 + 3 sin (rot + (1) + e-3t sin (rot + (2) + e-5t 

then the steady-state part of the above response is given by 

(a) 5 + 3 sin (rot + (1) (b) 5 + 3 sin (rot + (1) + e-3t sin (rot + (2) 

(c) 5 + e-5t (d) 5 

17. The impulse response of a system is 5 e-10t• Its step response is equal to 

(a) 0.5 e-10t (b) 5(1 - e-10t) (c) 0.5 (l - e-10l) (d) 10(1 - e-1Ot) 

18. The transfer function of a system is ~. When operated as a unity feedback system, 
l+s 

the steady-state error to a unit step input will be 

(a) zero 
1 

(b) 11 (c) 10 ( d) infinity 
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19. 
K 

A unity feedback second order control system is characterised by G(s) = --­
s(Js + B) 

Where J = moment of inertia, K = system gain, B = viscous damping coefficient. The 
transient response specification which is NOT affected by variation of system gain is 
the 

(a) peak overshoot 

( c ) settling time 

(b) rise time 

(d) damped frequency of oscillations 

20. In the control system shown in the given figure, the controller which can give zero 
steady-state error to a ramp input, with K = 9 is 

21. 

22. 

(a) proportional type + 

(b) integral type 

(c) derivative type 

(d) proportional plus derivative type. 

A linear second-order system with the transfer function G (s) = 2 49 is initially 
s +16s+49 

at rest and is subject to a step input signal. The response of the system will exhibit a 
peak overshoot of 

(a) 16% (b) 9% (c) 2% (d) zero 

100(s + 5)(s + 50) 
A system has the following transfer function: G (s) = -s4-:-(-s-+'::"'10-)-(s-=-2':"'-+-3-s-+:""'10-) 

The type and order of the systems are respectively 

(a) 4and9 (b) 4and7 (c) 5and7 (d) 7and5 

23. When the input to a system was withdrawn at t = 0, its output was found to decrease 
exponentially from 1000 units to 500 units in 1.386 seconds. The time constant of the 
system is 

(a) 0.500 (b) 0.693 (c) 1.386 (d) 2.000 

24. For the system shown in the given figure, the steady-state value of the output c(t) is 

(a) 0 

(b) 

(c) 00 

(d) dependent of the values ofK and K\ 

INPUT 

1 + 0.02s 

OUTPUT 

C(s) 
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25. The unit impulse response of a linear time-invariant second-order system is : 

get) = 10 e-8t sin 6t (t ~ 0). 

26. 

27. 

The natural frequency and the damping factor of the system are respectively 

(a) 10 radls and 0.6 (b) 10 radls and 0.8 

(c) 5 rad/s and 0.6 (d) 6 rad/s and 0.8 

[- a ± jb] are the complex conjugate roots of the characteristic equation of a second 
order system. Its damping coefficient and natural frequency will be respectively 

b b 
(a) and ~a2 + b2 (b) and a2 + b2 

~a2 + b2 ~a2 + b2 

a a 
(c) and ~a2 + b2 (d) and a2 + b2 

~a2 + b2 ~a2 + b2 

10(1+4s) 
A unity feedback control system has a forward path transfer function G(s) = 2 ( ). 

s l+s 

t 2 

If the system is subjected to an input ret) = 1 + t + 2" (t ~ 0), the steady-state error of 

the system will be 

(a) zero (b) 0.1 (c) 10 ( d) infInity 

28. In the system shown in the given fIgure, ret) = I + 2t (t> 0). The steady-state value of 
the error e(t) is equal to 

(a) zero C(t) 

(b) 2/10 ret) 

(c) 10/2 

(d) infInity 

29. The steady state error due to a ramp input for a type two system is equal to 

(a) zero (b) infInite 

(c) non-zero number (d) constant 

30. A second order control system is defIned by the following differential equation: 

d2 c(t) d c(t) 
4 ~ + 8 dt2 + 16 c(t) = 16 u(t) 

The damping ratio and natural frequency for this system are respectively 

(a) 0.25 and 2 rad/s (b) 0.50 and 2 rad/s 

(c) 0.25 and 4 rad/s (d) 0.50 and 4 rad/s 
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31. The open loop transfer function of a unity feedback system is given by _K_. If the 
s(s + 1) 

32. 

33. 

34. 

35. 

36. 

value of gain K is such that the system is critically damped, the closed loop poles of the 
system will lie at 

(a) -0.5 and -0.5 (b) ±jO.5 (c) 0 and-l (d) 0.5 ±jO.5 

A linear time invariant system, initially at rest when subjected to a unit step input gave a 
response c(t) = te-t (t :::: 0). The transfer function of the syste is 

s 1 1 1 
(a) 

(s + 1)2 
(b) 

s(s+ 1)2 (c) (s + 1)2 (d) s(s+l) 

The steady-state error resulting from input ret) = 2 + 3t + 4t2 for given system is 

(a) 2.4 
+ 

(b) 4.0 "')1 (c) zero 

(d) 3.2 

In the derivative error compensation 

(a) damping decreases and settling time decreases 

(b) damping increases and settling time increases 

( c ) damping decreases and settling time increases 

(d) damping increases and settling time decreases 

>\ 
10 

52 (4+5) 

J 

A second order system exhibits 100% overshoot. Its damping coefficient is 

(a) equal to 0 (b) equal to 1 (c) less than 1 (d) grater than 1 

d2y dy 
For a second order system 2 -2 + 4 - + 8y = 8x 

dt dt 

The damping ratio is 

(a) 0.1 (b) 0.25 (c) 0.333 (d) 0.5 

37. The feedback control system shown in the given figure represents a 

(a) Type 0 system 

(b) Type 1 system 

(c) Type 2 system 

(d) Type 3 system 
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38. In the type 1 system, the velocity error is 

(a) Inversely proportional to bandwidth 

(b) Directly proportional to error constant 

( c) Inversely proportional to error constant 

(d) Independent of error constant 

39. In position control systems, the device used for providing rate-feedback voltage is 
called 

(a) potentiometer 

( c ) synchro transformer 

(b) synchro transmitter 

(d) technogenerator 

40. A unity feedback control system has a forward path transfer function equal to 42.25 
s(s+6.5) 

The unit step response of this system starting from rest, will have its maximum value at 
a time equal to 

(a) 0 sec (b) 0.56 sec (c) 5.6 sec ( d) infinity 

41. Match the system open-loop transfer functions given in List-I with the steady-state 
errors produced for a unit ramp input. Select the correct answer using the code given 
below the lists: 

List-I List-II 

30 
A. 

S2 +6s+9 
l. Zero 

B. 30 
2. 0.2 --

S2 +6s 

c. 30 -- 3. 0.3 
S2 +9s 

s+l 
D. -- 4. Infmity 

S2 

Codes: 

(a) A B C D (b) A B C D 

2 3 4 4 3 1 2 

(c) A B C D (d) A B C D 

3 2 4 4 2 3 
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42. 

43. 

A transfer function G(s) has the pole-zero plot as shown in the given figure. Given that 
the DC gain is 2, the transfer function G(s) will be given by 

(a) 
2 (s + 1) 

(b) 
5(s+l) x - -

S2 + 4s + 5 S2 + 4s + 4 

(c) 
10(s+l) 

(d) 
10(s+l) -2 I -1 

S2 + 4s + 5 (s + 2)2 
I 

'" - - ---:i 

A plant has the following transfer function G(s) = (S2 + 0.2s + 1) 

For a step input it is required that the response settles to within 2% of its final value. The 
plant settling time is 

(a) 20 sec (b) 40 sec (c) 35 sec (d) 45 sec 

44. Match List-I with List-II and select the correct answer using the codes given below the 
lists: 

List-I (Transfer function) List-II (Controller) 

A. 
K\ S+K2 

K3 
1. P-controller 

B. 
K\S2 + K2s + K3 

2. PI-controller 
K 4s 

C. 
K\s+K2 

3. PO-controller 
K3S 

o. 
K\s 

K 2s 4. PID-controller 

Codes: 
(a) A B C 0 (b) A B C 0 

3 4 2 1 4 3 2 1 

(c) A B C 0 (d) A B C 0 

3 2 4 4 2 3 

45. Consider the following expressions which indicate the step or impulse response of an 
initially relaxed control system: 

1. (5 - 4e-2l) u(t) 2. (e-2t + 5) u (t) 

3. 8(t) + 8e-2t u(t) 4. 8(t) + 4e-2t u(t) 

Those which correspond to the step and impulse response of the same system include 

(a) 1 and 3 (b) 1 and 4 (c) 2 and 4 (d) 2 and 3 
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46. Assuming the transient response of a second-order system to be given by 

-41 

c(t) = 1 - b sin (ron ~ + 8) the settling time for the 5% criterion will be 
1-82 

1 
(a) - sec 

4 
3 

(b) - sec 
4 

5 
(c) - sec 

4 
(d) 4 sec 

47. Consider the systems with the following open-loop transfer functions: 

1. 
36 

2. 
s(s + 3.6) 

100 

s(s + 5) 
3. 

6.25 

s(s + 4) 

The correct sequence of these systems in increasing order of the time taken for the 

unit-step response to settle is 

(a) 1, 2, 3 (b) 3, 1,2 (c) 2, 3, 1 (d) 3,2, 1 

48. Match List I with List II and select the correct answer using the codes given below the 

lists: 

List I (Characteristic equations) List II (Nature of damping) 

A. s2 + ISs + 56.25 1. Undamped 

B. s2 + 5s + 6 2. Underdathped 

C. s2 + 20.25 3. Critically damped 

D. s2 + 4.5s + 42.25 4. Overdamped 

Codes: 

(a) A B C 0 (b) A B C 0 

3 4 2 2 3 4 

(c) A B C 0 (d) A B C 0 

4 3 2 3 4 2 

49. For the control system in the given figure to be critically damped the value of the gain 

'K' required is : 

r'l C(s) (a) (b) 5.125 

r (c) 6.831 (d) 10 

+ ____ K __ . S2 + 7s + 2 : 
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50. Match List I with List II and select the correct answer using the codes given below the 
lists: 

List I List II 

A. Derivative control 1. Improved overshoot response 
I 

B. Integral control 2. Less steady-state errors 

C. Rate feedback control 3. Less stable 

D. Proportional control 4. More damping 

Codes: 

(a) A B C D (b) A B C D 

2 3 4 2 3 4 

(c) A B C D (d) A B C D 

4 3 2 2 4 3 

51. A typical control system is shown in, the given figure. 

1 

52. 

Assuming R(s) = -, the steady-state error is given by 
s 

(a) 1 + K (b) K 

(c) zero (d) 1 

10 
A system has open-loop transfer function G(s) = ----­

s (s + l)(s + 2) 

C(s) 

3 
What is the steady state error when it is subjected to the input r (t) = 1 + 2t + 2" t2 ? 

(a) zero (b) 0.4 (c) 4 (d) infinity 

53. Consider a unit feedback control system shown in the given figure. The ratio of time 
constants of open-loop response to closed loop response will be 

(a) 1: 1 

(b) 2: 1 

(c) 3: 2 

(d) 2: 3 

C(s) 



420 MCQs from Competitive Examinations 

54. Consider the following overall transfer function for a unity feedback system : 

55. 

56. 

57. 

4 

S2 + 4s + 4 

Which of the following statements regardmg this system are correct ? 

1. Position error constant ~ for the system is 4. 

2. The system type one. 

3. The velocity error constant ~ for the system is finite. 

Select the correct answer using the codes given below : 

Codes: 

(a) 1, 2 and 3 (b) 1 and 2 ( c) 2 and 3 (d) 1 and 3 

A first order system is shown in the given figure. Its time response to a unit step input 
is given by 

(a) c(t) = [liT] [e-tlT] 

(b) c(t) = T (l - e-tlT) R(s) 

·11 +lST 1 
C(s) 
• 

(c) c(t) = (1 - e-tlT) 

(d) c(t) = Te-tiT 

16(s + 2) 
For a unity feedback system, the open-loop transfer function is G(s) = 2 ) ( ) 

s (s + 1 s + 4 

What is the steady-state error if the input is, r (t) = (2 + 3t + 4t2) u(t) ? 

(a) 0 (b) 1 (c) 2 (d) 3 

. C(s) 4 
A system has a transfer functIOn -- = -2---­

R(s) s +1.6s+4 

For the unit step response, the setling time (in seconds) for 2% tolerance band is 

(a) 1.6 (b) 2.5 (c) 4 (d) 5 

58. Consider the following statements : 

1. The derivative control improves the overshoot of a given system. 

2. The derivative control reduces steady-state error. 

3. Integral control reduces steady-state error. 

4. Integral control does not affect stability of the system. 

5. Integral control improves the overshoot of the system. 

Of these statements 

(a) 1 and 3 are correct 

( c) 2, 4 and 5 are correct 

(b) 1, 2 and 5 are correct 

(d) I, 3 and 5 are correct 
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59. In the case of a second order system described by the differential equation, 

(where 9i and 9
0 

are the input and output shaft angles), the natural frequency is given by 

(a) ~ (b) If (c) JKi (d) ~K-J 

60. A transducer has two poles as shown in the figure. The zeros are at infinity and the DC 
gain is 1. The steady-state output of the transducer for a unit step input will be 

1m 
(a) 

4 
x:- t , \ , \ 

(b) , 
2 I 

Re 
I 45° \ 

\ / 

1 \ / 

(c) 
, 

Ii 
x, 

(d) 

61. The velocity error constant ~ of a feedback system with closed-loop transfer function 

C( s) = __ G....:...( s..:...) _ is 
R(s) 1 + G(s) H(s) 

(a) ~ = ~l11J s G(s) H(s) 

(c) ~ = ~l11J s G(s) 

L · G(s) 
(b) ~ = s':'11J s --"'--'--

1+ G(s) H(s) 

(d) ~ = ~l~ s [1 + G(s) H(s)] 

62. The settling time of a feedback system with the closed-loop transfer function 

(a) ts = 2/(~ O)n) 

(c) ts = 4/(~ O)n) 
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63. A second order under-damped system exhibited a 15% maximum overshoot on being 
excited by a step input r (t) = 2u(t), and then attained a steady-state value of 2 
(see figures given). If, at t = to' the input were changed to a unit step r (t) = u (t), then 
its time response C (t) would be similar to 

(a) 3 - - - - - - - - - - - ~) 3 ----------- ---­

i 2 - i 2 -
C(t) C(t) 

o to t~ to t---+ 

(c) 3 (d) 3 - - - - - - - - - - - - - - -

i 2 - i 2 
C(t) C(t) 

o to t~ 

64. The response c(t) of a system is described by the differential equation 

d2 c(t) dc(t) 
-- + 4 -- + 5c(t) = 0 

dt2 dt 

The system response is 

(a) undamped 

(c) critically damped 

(b) underdamped 

(d) oscillatory 

65. The system with the open-loop transfer function G(s) H(s) = _1_ is 
s(1 + s) 

(a) type 2 and order 1 

( c ) type 0 and order 0 

(b) type 1 and order 1 

(d) type 1 and order 2 

to t---+ 
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66. The transfer function G (s) of a PID controller is 

67. 

68. 

69. 

(a) K (1 +_1_+ TdS) 
TIs 

The industrial controller having the best steady-state accuracy is 

(a) a derivative controller (b) an integral controller 

(c) a rate feedback controller (d) a proportional controller 

e-S 

A step input is applied to a system with the transfer function G (s) = . The 
1 +0.5s 

output response will be 

(a) (b) 

1
----------

g/ 
- ~ 

(c) (d) 

The open-loop transfer function G(s) of a unity feedback control system is _1_ 
s(s + 1) 

The system is subjected to an input r(t) = sin t. The steady-state error will be 

(a) zero (b) 1 

(d) J2 sin (t +~) 
70. A second order, system has the damping ratio; and undamped natural frequency of 

oscillation ron' The settling time at 2% tolerance band of the system is 
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71. Consider the following statements: 

A proportional plus derivative controller 

1 . has high sensitivity 

2. increases the stability of the system 

3. improves the steady-state accuracy 

Which of these statements are correct ? 

(a) 1, 2 and 3 (b) 1 and 2 (c) 2 and 3 (d) 1 and 3 

72. Which one of the following is the steady-state error for a step input applied to a unity 

. . 10 
feedback system with the open loop transfer functlOn O(s) = 2 ? 

s +14s+50 

(a) ess = 0 (c) ess = 0.2 

73. With derivative output compensation, for a specified velocity error constant, 

(a) Overshoot for a step input increases 

(b) The settling time is decreased 

(c) The natural frequency decreases 

(d) Peak time increases 

74. Which of the following is not a desirable feature ofa modem control system 

(a) Quick response (b) accuracy 

(c) correct power level (d) no oscillation 

75. Damping factor and undamped natural frequency for the position control system is 
given by 

(a) 2.JKj, .JKj respectively. 

f 
( c) 2.JKj,,JK / J respectively. 

Where, K = torsional stiffness 

J = Moment of Inertia 

K 
(b) 2fJ' ~K/ J respectively 

J 
(d) 2..JKi'.JKj respectively. 

and f = Coefficient viscous friction 

76. In the derivative error compensation 

(a) damping decreases and settling time decreases 

(b) damping increases and settling time increases 

(c) damping decreases and settling time increases 

(d) damping increases and settling time decreases. 
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77. A control system having unit damping factor will give 

(a) critically damped response (b) oscillatory response 

(c) undamped response (d) no response. 

78'. Which of the following will not decrease as a result of introduction of negative feedback? 

(a) Instability (b) Band width 

( c ) Overall gain (d) Distortion 

79. Consider the following statements regarding time domain analysis of control systems: 

1. Derivative control improves systems transient performance. 

2. integral control does not improve system steady state performance 

3. integral control can convert a second order system into a third order system 

Of these statements 

(a) 1 and 2 are correct 

( c ) 2 and 3 are correct 

(b) 1 and 3 are correct 

(d) I, 2 and 3 are correct 

80. The open-loop transfer transfer function of a unity feedback control system is given by 

K 
G(s) = s(s + 1) 

If the gain K is increased to infinity, then the damping ratio will tend to become 

1 
(a) .fi (b) 1 (c) 0 (d) ex) 

81. The system shown in the given figure has a unit step input. In order that the steady-state 
error is 0.1, the value of K required is 

c 
(a) 0.1 (b) 0.9 

(c) 1.0 (d) 9.0 

82. The system shown in the given figure has second order response with a damping ratio 
of 0.6 and a frequency of damped oscillations of 10 rad/sec. The values of Kl and K2 
are respectively 

(a) 12.5 and 15 

R~S(S+1;+K2sTC (b) 156.25 and 15 

(c) 156.25 and 14 

(d) 12.5 and 14 
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Chapter 4 

1. None of the poles of a linear control system lies in the right half of s plane. For a 

bounded input the output of this system 

(a) is always bounded (b) could be unbounded 

(c) always tends to zero (d) none of the above 
2. The number of roots of the equation 2s4 + s3 + 3s2 + 5s + 7 = 0 that lie in the right half 

of s plane is 

(a) zero (b) one (c) two (d) three 

3. The characteristic equation of a feedback control system is 2s4 + s3 + 3s2 + 5s + 10 = O. 
The number of roots in the right halfofs-plane are 

(a) zero (b) 1 (c) 2 (d) 3 

4. Consider a system shown in the given figure with 

5. 

~ t~_-_-_-_"@_G(_S):_-_-_-~~. 

What values of 'K' and 'a' should be chosen so that the system oscillates ? 

(a) K=2,a=1 (b) K=2, a=0.75 (c) K=4,a=1 (d) K=4,a=0.75 

k 
The open loop transfer function of a system is given by G(s) = s(s + 2)(s + 4) . The 

maximum value of k for which the unity feedback system will be stable, is 

(a) 16 (b) 32 (c) 48 (d) 64 

6. The characteristic equation 1 + G(s) R(s) = 0 of a system is given by 

s4 + 6s3 + 11 s2 + 6s + K = 0 

For the system to remain stable, the value of gain K should be 

(a) zero (b) greater than zero but less than 10 

(c) greater than 10 but less than 20 (d) greater than 20 but less than 30 

7. The open-loop transfer function of a unity feedback control system is 

30 
G(s) R(s) = s(s + l)(s + T) where T is a variable parameter. The closed loop system will 

be stable for all values of 

(a) T> 0 (b) 0 < T < 3 (c) T> 5 (d) 3<T<5 
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8. The open-loop transfer function of a unity-feedback control system is : 

K(s + 10)(s + 20) 
G (s) == s2(s+2) 

The closed-loop system will be stable if the value of K is 

(a) 2 (b) 3 (c) 4 (d) 5 

9. The characteristic equation of a feedback control system is s3 + Ks2 + 5s + 10 == O. 

For the system to be critically stable, the value ofK should be 

(a) 1 (b) 2 (c) 3 (d) 4 

10. The control system shown in the given figure has an internal rate feedback loop. The 
closed-loop system for open and close conditions of switch will be respectively 

(a) unstable and stable 
R(s) C(s) 

(b) unstable and unstable 

(c) stable and unstable 

(d) stable and stable 

11. For the block diagram shown in the given figure, the limiting values ofK for stability of 
inner loop is found to be X < K < Y. The overall system will be stable if and only if 

12. 

(a) 4X < K < 4Y R(s) + K C(s) 

(b) 2X < K < 2Y (s-a)(s+2a)(s+3a) 

(c) X<K<Y 

X Y 
(d)-<K<-

2 2 

A feedback control system is shown in the given figure. The system is stable for all 
positive values of K, if 

(a) T == 0 

(b) T < 0 

(c) T> 1 

(d) O<T<1 

C(s) 
R(s) 

13. The characteristic equation of a system is given by 3s4 + 10s3 + 5s2 + 2 == O. This 
system is 

(a) stable (b) marginaly stable (c) unstable (d) neither (a), (b) nor (c) 

14. The characteristic equation s3 + 3s2 + 3s + k == 0 is stable for which value of k ? 

(a) - 6 (b) 15 (c) 5 (d) 12 
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15. Which of the following statement about the equation below, for Routh Hurwitz criterion 

is true? 

2S4 + s3 + 3s2 + 5s + 10 = 0 

(a) It has only one root on the imaginary axis 

(b) It has one root in the right half of the s-plane 

(c) The system is unstable 

(d) The system is stable. 

16. When all the roots of the characteristic equation are found in the left half of s-plane, the 

system response due to initial condition will 

(a) increase to infinity as time approaches infinity 

(b) decreases to zero as time approaches infinity 

( c ) remain constant for all time 

(d) be oscillating 

17. Match List-I with List-II and select the correct answer by using the codes given below 

the lists: 

List-I (Characteristic Root Location) List-II (System characteristic) 

A. (-1 + j), (-1 -j) 1. Marginally stable 

B. (-2 + j), (-2 -j), (2j), (-2j) 2. Unstable 

C. -j, j, -1, 1 3. Stable 

Codes: 

(a) A B C (b) A B C 

1 2 3 2 3 1 

(c) A B C (d) A B C 

3 2 1 3 2 

18. A control system is as shown in the given figure. The maximum value of gain K for 

which the system is stable is 

(a) J3 
(b) 3 

(c) 4 

(d) 5 
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19. If the open-loop transfer function of the system is G(s) H(s) = K(s + 10) , 
s (s + 8)(s + 16) (s + 72) 

then a closed loop pole will be located at s = - 12 when the value of K is 

(a) 4355 (b) 5760 (c) 9600 (d) 9862 
20. Consider the following statements regarding the number of sign change in the first 

column of Routh array in respect of the characteristic equation s2 + 2as + 4 : 

1. If a = + 1;, where I; = near zero, number of sign changes will be equal to zero. 

2. If a = 0, the number of sign change will be equal to one. 

3. If a = -I;, where I; = near zero, the number of sign changes will be equal to two 

Of these statements 

(a) 1, 2 and 3 are correct 

( c) 2 and 3 are correct 

(b) 1 and 2 are correct 

(d) 1 and 3 are correct 

21. How many roots of the characteristic equation s5 + s4 + 2s3 + 2s2 + 3s + 15 = 0 line in 
the left half of the s-plane ? 

22. 

23. 

(a) 1 (b) 2 (c) 3 (d) 5 

The first column of a Routh array is 

s5 1 

S4 2 

s3 3 

2 

s2 1 
- -

3 
sl 10 

sO 2 

How many roots of the corresponding characteristic equation are there in the left-half 
of the s-plane ? 

(a) 2 (b) 3 (c) 4 (d) 5 

1 K 
Consider a negative feedback system where, G(s) = (s + 1) , H(s) = 

The closed-loop system is stable for 

(a) K> 20 
(c) 8:sK:S14 

(b) 15 < K < 10 

(d) K < 6 

s(s + 2) 

24. The value ofK for which the unity feedback system G(s) = K crosses the 
s (s + 2) (s + 4) 

imaginary axis is 

(a) 2 (b) 4 (c) 6 (d) 48 
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25. While forming Routh's array, the situation of a row of zeros indicates that the 
system 

(a) has symmetrically located roots (b) is not sensitive to variations in gain 

(c) is stable (d) unstable 

26. The closed loop system shown above becomes marginally stable if the constant K is 
chosen to be 

(a) 10 

(b) 20 

(c) 30 

(d) 40 

27. A closed-loop system is shown in the following figure: 

The largest possible value of P for which this system would be stable is : 

(a) 
10 

(b) 1.1 S3 +4S2 +3s+1 

(c) 1.2 
P 

(d) 2.3 

Output 

28. First column elements of the Routh's tabulation are 3,5 ~, ~, 2. It means that there 

( a) is one root in the left half of s-plane 

(b) are two roots in the left half of s-plane 

(c) are two roots in the right half of s-plane 

(d) is one root in the right half of s-plane 

29. The open-loop transfer fucntion of unity feedback control system is 

K 
G(s) = , 0 < a < b 

s(s+ a)(s + b) -

The system is stable if 

(a+ b) 
(a) 0 <K<-­

ab 

(c) O<K<ab(a+b) 

ab 
(b) O<K<-­

(a + b) 

a 
(d) 0 < K < b (a + b) 

• 



MCQs from Competitive Examinations 431 

30. Which one of the following characteristic equations can result in the stable operation of 

the feedback system ? 

(a) s3 + 4s2 + S - 6 = 0 (b) s3 - s2 + 5s + 6 = 0 

( c) s3 + 4s2 + lOs + 11 = 0 (b) s4 + s3 + 2s2 + 4s + 6 = 0 

31. Consider the following statements : 

Routh-Hurwitz criterion gives 

1. absolute stability 

2. the number of roots lying on the right half of the s-plane 

3. the gain margin and phase margin 

Which of these statements are correct ? 

(a) 1, 2 and 3 (b) 1 and 2 (c) 2 and 3 (d) I and 3 

32. The given characteristic polynomial s4 + s3+ 2s2 + 2s + 3 = 0 has 

(a) zero roots in RHS of s-plane 

(c) two roots in RHS of s-plane 

(b) one root in RHS of s-plane 

(d) three roots in RHS of s-plane 

33. For making an unstable system stable 

(a) gain of the system should be increased 

(b) gain of the system should be decreased 

(c) the number of zeros in the loop transfer function should be increased 

(d) the number of poles in the loop transfer function should be increased. 

34. Which of the following system is unstable? 

(b) G(s) H(s) = K(s + 1) 
S2(S + 4)(s + 5) 

K(s + 2) 
(c) G(s) H(s) = (s+I)(s-3) 

K 
(d) G(s) H(s) = 3 

(Ts + 1) 

K>99 

K>2 

-1 < K < 8 T>O 
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35. The characteristic equation of a closed-loop system is given by : 

s4 + 6s3 + 11s2 + 6s + K = O. 

Stable closed-loop behaviour can be ensured when gain K is such that 

(a) 0<K<10 (b) K> 10 (c) -oo:sK<oo (d) 0<K:s20 

36. By a suitable choice of the scalar paramter K, the system shown in the given figure can 

be made to oscillate continuously at a frequency of 

(a) 1 rad/s 

(b) 2 rad/s 

(c) 4 rad/s 

(d) 8 rad/s 

c(t) 

37. The open-loop transfer functions with unity feedback are given below for different 

38. 

systems: 

2 
G(s) = 

2 
1. G(s) = - 2. 

s+2 s(s + 2) 

2 2(s + 1) 
3. G(s) = 

s\s +2) 
4. G(s) -

s(s + 2) 

Among these systems the unstable system is 

(a) 1 (b) 2 (c) 3 (d) 4 

.. K(s+10) 
The open-loop transfer function of a control system IS given by ---'---­

s(s + 2)(s + a) 

The smallest possible value of 'a' for which this system is stable under unity feedback 

closed-loop condition for all positive values ofK is 

(a) 0 (b) 8 (c) 10 (d) 12 

39. The open-loop transfer function of a unity negative feedback control system is given by 

G(s) = K(s + 2) 
(s + l)(s -7) 

For K > 6, the stability characteristic of the open-loop and closed-loop configurations of 

the system are respectively 

(a) stable and stable (b) unstable and stable 

(c) stable and unstable (d) unstable and unstable 
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Chapter 5 

1. 

2. 

K 

jroV Jro 

A un~ty fe
J

:j8Ck ~ on open loop fSfer function, G( s) = s' . The root I)iS plot is: 

(a) (J (b) (J (c) ~ (d) (J 

K(s + 2) 
Given a unity feedback system with open-loop transfer function G(s) = (s + \)2 

The correct root-locus plot of the system is 

r ~ (b)~_1 r ! 
(a) --O~ ... ~~~--+-~ 

-2 -I 

(c) • e)-~--I --+--.. r 
jro 

-2 
~ (d) 

3. The closed-loop transfer function of a feedback control system is given by 

C(s) K 
=----::------

R(s) S2 +(3+K)s+2 

Which one of the following diagrams represents the root-locus diagram of the system 
for K > O? 

8 
i 

::.G 

(a) 

K=Q K=Q 
;...; 
,(, 
8 

jro 

(c) 
K=Q 

jro 

(b) 
(J 

K-+oo 

(J 
(d) 

oo+-K 

K=Q K=Q 

00 +- K K=Q K=Q 

jro 

jro 

(J 

K-+oo 
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4. The open-loop transfer function of a feedback control system is given by 

5. 

6. 

7. 

K(s+ 2) 
G(s) H(s) = s(s + 4)(S2 + 4s + 8) 

In the root-locus diagram of the system, the asymptotes of the root loci for large values 
ofK meet a point in the s-plane. Which one of the following is the set of co-ordinates of 
that point? 

(a) (-1.0) (b) (-2.0) (d) (2, 0) 

K 
If the characteristic equation of a closed-loop system is 1 + S (s + l)(s + 2) = 0 the 

centroid of the asymptotes in root-locus will be 

(a) zero (b) 2 (c) - 1 (d) - 2 

The root-locus of a unity feedback system is shown in the given figure. The open-loop 

transfer function of the system is 

(a) 
K 

s (s + l)(s + 3) 

~ 

(b) 
K (s + 1) 

s (s + 3) s-plane 

K (s+3) 
(c) Re 

s (s + 1) 

(d) Ks 

(s+1)(s+3) 

The open-loop transfer function of a feedback control system is 
S(S2 +3s+6) . 

K 

The break-away point(s) of its root-locus plot 

(a) exist at (-1 ±j 1) (b) exist at H ± MJ 
(c) exists at origin (d) do not exist 
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8. Match List-I with List-II in respect of the open-loop transfer function 

K(s + 10)(s2 + 20s + 500) 
G(s) H(s) '= (20)( 2 and select the correct answer using the codes 

s s+ s+50)(s +4s+5) 

given below the lists: 

List-I (Types of loci) List-II (Numbers) 

(A) Separate loci 1. One 

(B) Loci on the real axis 2. Two 

(C) Asymptotes 3. Three 

(D) Breakaway points 4. Five 

Codes: 

A B C D A B C D 

(a) 3 4 2 (b) 3 4 1 2 

A B C D A B C D 

(c) 4 3 2 (d) 4 3 2 

9. The characteristic equation of a linear control system is s2 + 5Ks + 10 '= 0 

The root-loci of the system for 0 < K < 00 is 

(a) jw (b) jw 

K=O K=oo 

oo~K K=oo (J K=O 
K=O K=oo 

(c) jw (d) jw 

K=O K=oo 

K=oo 
(J 

K~oo K=O 

K=O K=oo 
K=O 

(J 

(J 

K~O 

10. The characteristic equation of a feedback control system is given by s3 + 5s2 + (K + 6)s 
+ K '= O. In the root loci diagram, the asymptotes of the root loci for large 'K' meet at a 
point in the s-plane whose coordinates are 

(a) (2, 0) (b) (-1,0) (c) (-2,0) (d) (-3,0) 
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11. Which of the following are the characteristics of the root locus of 

K(s + 5) 
G(s) H(s) = (s + l)(s + 3) 

1. It has one asymptote 2. It has intersection with jro-axis 

3. It has two real axis intersections 4. It h,as two zeros at infinity 

Select the correct answer using the codes given below : 

Codes: 

(a) 1and2 (b) 2and3 (c) 3 and 4 (d) 1 and 3 

12. Identify the correct root locus from the figures given below referring to poles and zeros 
at ±j 8 and ±j 10 respectively ofG(s) H(s) ofa single-loop control system. 

jw jw 

(a) (b) 

--t-~C1 

(c) jw (d) 

13. Consider the Root Locus Diagram of a system and the following statements: 

1. The open loop system is a second order system 

2. The system is overdamped for K > 1 

3. The system is absolutely stable for all values of K 

Which of these statements are correct ? 

(a) 1, 2, and 3 (b) 1 and 3 (c) 2 and 3 (d) 1 and 2 

K=} 

jw 

14. In the root-locus for open-loop transfer function G(s) H(s) = K(s + 6) , the break 
(s + 3)(s + 5) 

away and break in points are located respectively at 

(a) - 2 and - 1 (b) - 2.47 and - 3.77 

(c) - 4.27 and - 7.73 (d) - 3 and - 4 
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K 
15. A unity feedback system has G(s) = s (s + 1) (s + 2) 

In the root-locus, the break-away point occurs between 

(a) s = 0 and -1 (b) s = - 1 and - <:Xl 

(c) s = - 1 and - 2 (d) s = - 2 and - <:Xl 

16. The loop transfer function of a feedback control systme is given by 

k 
G(s) H(s) = s (s + 2) (S2 + 2s + 2) 

Number of asymptotes of its root loci is 

(a) 1 (b) 2 .(c) 3 (d) 4 

437 

17. Which of the following are the features of the break away point in the root-locus of a 
closed-loop control system with the characteristic equation I + KGI (s) HI (s) = 0 ? 

1. It need not always occur only on the real axis. 

2. At this point GI (s) HI (s) = O. 

dK 
3. At this point d; = 0 

Select the correct answer using the codes given below: 

(a) 1,2 and 3 (b) 1 and 2 

(c) 2 and 3 (d) 1 and 3 

18. An open-loop transfer function is given by K (s + 3) 
s (s + 5) 

Its root-loci will be as in 

(a) (b) 

K=ao K=Q K=ao K=Q 

-5 -3 Q 

(c) (d) 

K=Q 

-5 K=Q K=Q K=ao 
Q 
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19. The loop transfer function of a closed-loop system is given by 

K 
G(s) H(s) = S2 (S2 + 2s + 2) 

The angle of departure of the root locus at s = - 1 + j is 

(a) zero (b) 90 0 (c) - 900 (d) - 1800 

20. Consider the loop transfer function G(s) H(s) = K(s + 6) 
(s+3)(s+5) 

In the root-locus diagram, the centroid will be located at 

(a) - 4 (b) - 1 (c) - 2 (d) - 3 

21. For a unity negative feedback control system, the open-loop transfer function is 

K 
G(s)= ---­

s(s + 1) (s + 2) 

The root-locus plot of the system is 

(a) 
jro 

s-plane 

-2 -1 

(c) jro 

s-plane 

-2 -1 

(b) 
jro 

s-plane 

-2 -1 

(d) jro 

s-plane 

22. The intersection of asymptotes of root-loci of a system with open-loop transfer function 

K 
G(s) H(s) =is 

~ s(s+l)(s+3) 

(a) l.44 (b) l.33 (c) - l.44 (d) - l.33 
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23. The root locus plot of the system having the loop transfer function 

24. 

K 
O(s) H(s) = has 

s(s+4)(s2 +4s+5) 

(a) no breakaway point (b) three real breakaway points 

(c) only one breakaway point (d) one real and two complex breakaway points 

k(s + 1) 
An open loop transfer function is given by O(s) H(s) = 2 • It has 

s(s +2)(s + 2s + 2) 

(a) one zero at infinity 

(c) three zeros at infinity 

(b) two zeros at infinity 

(d) four zeros at infinity 

25. The intersection of root locus branches with the imaginary axis can be detennined by 
the use of 

(a) Nyquist criterion 

(c) Polar plot 

(b) Routh's criterion 

(d) None of the above. 

26. The root-locus of a unity feedback system is shown in the figure. The open loop transfer 
function is given by 

(a) 
s(s + 1)(s + 2) 

K 

(c) K(s+2) 
s(s + 1) 

(b) 

(d) 

K(s+ 1) 

s(s + 2) 

Ks 

(s + l)(s + 2) 

27. The characteristic equation of a unity feedback control system is given by 

s3 + K1s2 + S + K2 = 0 

Consider the following statements in this regard : 

1. For a given value of K1, all the root-locus branches will tenninate at infinity for 

variable K2 in the positive direction. 

2. For a given value of K2, all the root-locus branches will tenninate at infinity for 
variable Kl in the positive direction. 

3. For a given value of~, only one root-locus branch will tenninate at infinity for 
variable Kl in the positive direction. 

Of these statments : 

(a) I and 2 are correct 

( c) 2 alone is correct 

(b) 3 alone is correct 

(d) 1 and 3 are correct 
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28. 

29. 
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k 
The breakaway point of the root locus for the system G(s) H(s) = is 

s(s + 1)(s + 4) 

(a) -0.465 (b) -2.87 (c) -1.0 (d) -2.0 

The given figure shows the root-locus of open-loop transfer function of a control system. 

Index: 

o a 

30. The loop transfer function GH of a control system is given by 

K 
GH=-------

s(s + 1)(s + 2)(s + 3) 

Which of the following statements regarding the conditions of the system root loci 
diagram is/are correct? 

1. There will be four asymptotes, 

2. There will be three separate root loci. 

3. Asymptotes will intersect at real axis at cr A = -2/3 

Select the correct answer using the codes given below: 

Codes: 

(a) 1 alone (b) 2 alone (c) 3 alone (d) 1,2 and 3 

Chapter 6 

1. The magnitude plot for a transfer function is shown in figure. 

What is the steady-state error corresponding to a unit step input? 

(a) 101 

1 
(c) 41 

(b) 100 

(d) 
40 

G, dB 

-20 dB dec 
401---...... 

-+----~- logro 
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2. The function corresponding to the Bode plot of figure is 

if/ 
(d) A= 1 + J/f1 

441 

3. The asymptotic approximation of the log-magnitude versus frequency plot of minimum 
phase system with real poles and one zero is shown in Fig. Its transfer function is 

(a) 
20(s + 5) 

s(s + 2Xs + 25) 
dB 

10(s+5) 
(b) (S+2)2(S+25) 54 

-40dB/dec 

--60dB/dec 

(c) 
20(s + 5) 

S2(S + 2Xs + 25) 

-40dB/dec 

(d) 
50(s +5) 

s2(s+2Xs+25) 

--~~--~2~~5--~~----.m&s 
0.1 

4. A differentiator has a transfer function whose 

(a) phase increases with frequency (b) Amptitude remains constant 

(c) Amptitude increases linearly (d) Amptitude decreases linearly with 'f 

5. The magnitude-frequency response of a control system is shown in the figure. The 
value of Cl) 1 and Cl)2 are respectively 

(a) 10 and 200 

(b) 20 and 200 

(c) 20 and 400 

(d) 100 and 400 

db 
gain +20db/decade 

26dB - - -

20dB 
-20db/decade 
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6. 
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K 1 
The transfer function of a system is given by G Gro) = K < -

(jro)(jroT + 1) , T 

Which one of the following is the Bode plot of this function? 

(b) 
db 

-20 db/decade t 
-20 db/decade 
,/ 

t I 
20 LogK I 

7. The Bode plot shown in the given figure has GGro) as 

100 

(a) jro(l+ jO.5 roXl + jO.1ro) 
Gain db 

100 
(b) jro(2+ jroX10+ jro) 

20 LoglO IG (jro)1 t -20 db decade 

20db 

2 I 10 100 
- - - - - - - - - ro (log scale) 

10 
(c) jro(1+2jroXl+1Ojro) 

10 
(d) jro(1+0.5jroXl+O.ljro) 

~Odbdecade 
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8. 

9. 

10. 

11. 

1 + s .. 
The polar plot of G(s) = 1 + 4s for 0 ~ ro ::: x In G-plane IS 

(a) (b) G plane 

-I -D.25 

0)=00 

(c) 
G plane 

(d) 

G plane 

0)=00 

O)=oc 0)=0 
-1 -D.25 

A system with transfer function G(s) = _s_ is subjected to a sinusoidal input 
(l + s) 

r (t) = sin rot. In steady-state, the phase angle of the output relative to the input at ro = 0 
and ro = 00 will be respectively , 

(a) 0° and -90° (b) 0° and 0° (c) 90° and 0° (d) 90° and -90° 

A system has fourteen poles and two zeros. The slope of its highest frequency asymptote 
in its magnitude plot is 

(a) - 40 dB/decade (b) - 240 dB/decade 

(c) - 280 dB/decade (d) - 320 dB/decade 

s+5 
The phase angle of the system G(s) = 2 varies between 

s + 4s +9 

(a) 0° and 90° (b) 0° and -90° (c) 0° and -180° (d) -90° and -180° 

12. The following Bode plot represents: 

100s2 
(a) 

(.1+0.ls)3 

(b) 
1000 S2 

(1 + 0.ls)3 

(c) 
100 S2 

(1 + 0.1 S)5 

(d) 
1000 S2 

(1 + 0.ls)5 

100d8 

I 
40d8/dj:cade 

0) = 10 

-60d8/decade 
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13. List I and List II show the transfer function and polar plots respectively. Match List-I 
with List-II and select the correct answer using the codes given below the lists: 

~ist-I ~ist-II 

ro=oo 

A. 
s(1 + sT) 

1. 

ro ~O 

B. 2. 
(1 + sT\) (l + sT2 ) ro=oo 

ro ~O 

c. ro=oo 3. O~ro 

D. 4. 

Codes: 

A B C 0 A B C 0 

(a) 2 1 4 3 (b) 3 4 1 2 

(c) 2 4 3 (d) 3 1 4 2 

14. Octave frequency range is given by : 

(a) 
0)\ 

(b) 
0)\ 

(c) 
0)\ 

(d) 
0)\ 

- =2 - =4 - =8 - = 10 
0)2 0)2 0)2 0)2 

15. A system has 12 poles and 2 zeros. Its high frequency asymptote in its magnitude plot 
has a slope of 

(a) - 200 dB/decade (b) -240 dB/decade 

(c) -280dB/decade (d) - 320 dB/decade 
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16. A linear stable time-invariant system is forced with an input x(t) = A sin rot 

Under steady-state conditions, the output yet) of the system will be 

17. 

(a) A sin (rot + ~), where ~ = tan-1 I G Gro) I 

(b) I G Gro) I A sin [rot + LG Gro)] 

(c) I G Gro) I A sin [2 rot + LG Gro)] 

(d) AG Gro) sin [rot + LG Gro)] 

x(t) ----i 

4 
For the second-order transfer function T(s) = ---­

S2 + 2s + 4 

The maximum resonance peak will be 

(a) 4 
4 

(b) -
3 

(c) 2 

G (s) f---- y(t) 

2 
(d) fj 

445 

18. The magnitude plot for a minimum phase function is shown in the figure. The phase 

plot for this function. 

(a) cannot be uniquely determined 

(b) will be monotonically increasing from 

00 to 1800 

( c ) will be monotonically decreasing from 

1800 to 00 

G.dB 

+6dB/oct -6dB/oct 

32dB --;~ 
12dB~ I I'" 

I I I logro scale 

0.1 0.5 1 5 

(d) will be monotonically decreasing from 1800 to - 900 

19. What is the slope change at ro = 10 of the magnitude vis frequency characteristic of a 

unity feedback system with the following open-loop transfer function? 

G(s) = 5(l+jO.lro) 
jro (l + j 0.5 ro)[1 + j 0.6 (ro / 50) + Gro / 50)2] 

(a) - 40 dB/dec to - 20 dB/dec 

(c) - 20 dB/dec to - 40 dB/dec 

(b) 40 dB/dec to 20 dB/dec 

(d) 40 dB/dec to - 20 dB/dec 
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20. Match List I with List II and select the correct answer using the codes given below the 
lists: 

List I (Transfer Functions) List II (Description) 

1-s 
A. 

1+s 
1. Non-minimum phase-system 

1-s 
B. (1 + s) (1 + 2s) (1 + 3s) 2. Minimum phase system 

1 +3s 
C. 

(1 + 4s)(1 + 2s)(1 + s) 
3 . All pass system 

Codes: A B C 

(a) 1 3 2 

(b) 3 2 1 

(c) 3 2 

(d) 2 3 

21. Which one of the following is the polar plot of a typical type zero system with open-loop 

transfer function G Gro) = k 
(1 + jroT,)(l + jroT,) 

(a) 

(c) 

-180° 

-180° 

Jf 
GUm) 

-270° (b) 

-270° (d) 

-90° 

-270° 

-180° 

-270° 
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22. 

23. 

4 
A second-order overall transfer function is given by ---­

S2 +2s+4 

Its resonant frequency is 

(a) 2 (b) .J2 (c) J3 (d) 3 

The phase angle for the transfer function G(s) = at corner frequency is 
(l + sT)3 

(a) - 45° (b) - 90° (c) - 135° (d) - 270° 

447 

24. The magnitude plot of a transfer function is shown in the figure. The transfer function 
in question is 

4(1+~) 4sl1 +~) Gain, dB --6dB/octave 

(a) (b) 
--6dB/octave 

S(l+ 1~) (1 + l~) 
6dB 

4(1+ 2s) 4s (1 + 2s) 2 10 
(c) 

s (1 + lOs) 
(d) 

(1 + lOs) (02 (log scale) 

25. The open-loop transfer function of a unity negative feedback system is 

K (s + 10)(s + 20) 
G(s) - --;:--------'-­

- S3 (s+100)(s+200) 

The polar plot of the system will be 

(a) 
ImG(s) 

(b) 
ReG(s) 

(O=ao 

ImG(s) 

ReG(s) 
(c) (d) 

(O=ao 

ImG(s) 

ReG(s) 
(O=ao 

ImG(s) 

(O=ao 

ReG(s) 

26. Open loop transfer function of a system having one zero with a positive real value is 
called 

(a) zero phase function (b) negative phase function 

(c) positive phase function (d) non-minimum phase function 
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27. An open loop transfer function of a unity feedback control system has two finite zeros, 
two poles at origin and two pairs of complex conjugate poles. The slope of high frequency 
asymptote in Bode magnitude plot will be 

(a) + 40 dB/decade (b) 0 dB/decade 

(c) .- 40 dB/decade (b) -80 dB/decade 
28. A decade frequency range is specified by 

(a) (02 = 2 (b) ~ = lU (c) ~ = 8 (d) none of the above 
(01 (01 (01' 

29. Which one of the following transfer functions represents the Bode plot shown in the 

figure? I OdB 
I-s . 

(a) G= - 0) 1 
l+s 

(b) G= (1+S)2 

1 
(c) G = -

S2 

1 -180° 
(d) G = s(1 + s) -----0}-i=-1 -----

30. The characteristic equation of a closed-loop control system is given by s2 + 4s + 16 = 0 

The resonant frequency in radians/sec of the system is 

31. 

(a) 2 (b) 2J3 (c) 4 (d) 2fi 
The log-magnitude Bode plot of a minimum phase system is shown in the figure. Its 
transfer function is given by 

s-10 
(a) G (s) = s+100 

s+lO 
(b) G (s) = s _ 100 

s-10 
(c) G (s) = s-100 

s+lO 
(d) G (s) = 's+100 

o 
N 

20 - - - - - - -

8 

0r-------~10~---80~~-----
100 

32. For a closed-loop transfer function given below 

C(s) 2600K(s + 25) 
-- = the imaginary axis intercepts of the 
R(s) S4 + 125s3 + 5100s2 + 65000s + 65000K 

root loci will be 

(a) ±j22.8 (b) ±j2.28 (c) ±j1.14 (d) ±j 11.4 
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33. Match List I with List IT and select the correct answer using the codes given below the lists 

A. 

B. 

c. 

D. 

List I [G(s) H(s)] 

K 

l+sTJ 

K 

(I + TlsXI + T2s) 

K 

s2(1 + sTI) 

Codes: 

(a) A B C 

4 5 

(c) A B C 

4 2 

2. 

3. 

4. 

5. 

D (b) 

3 

D (d) 

3 

List II (Nyquist plot) 

r 
0' 

r 100
=00 

• 00 - 0 0' 

b • 00 -0 0' 
ro=oo 

~~~f~oo • 0' 00 = 0 

A B C D 

1 4 3 5 

A B C D 

4 2 5 
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34. The Nyquist plot for a control system is shown in Figure. I. The Bode plot for the same 
system will be as in 

1m 

(-1 + jO) 

Nyquist plot (Figure 1) 

(a) 
-20 dB/dec 

I GI 1---",,-

-40 dB/dec 

--60 dB/dec 

(c) 
IGI 

--60 dB/dec 

Chapter 7 

(b) 

(d) 

Re 

IGI 

:-40 dB/dec 

-40 dB/dec 

1. The polar plot of a type-I, 3-pole, open-loop system is shown in Fig. The closed-loop 

system is 

(a) always stable 1m G(s) 
G(s) 

(b) marginally stable 
-1.42 Re G(s) 

(c) unstable with one pole on the right half of s-plane 

(d) unstable with two poles on the right half of s-plane 
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2. Which one of the following statements is true for gain margin and phase margin of two 
closed-loop systems having loop transfer functions G(s) H(s)and exp(-s) G(s) H(s) ? 

(a) Both gain and phase margins of the two systems will be identical 

(b) Both gain and phae margins ofG(s) H(s) will be more 

( c ) Gain margins of the two system are the same but phase margin of G( s) H( s) will be 
more 

(d) Phase margins of the two system are the same but gain margin ofG(s) H(s) will be 
less 

3. An effect of phase-lag compensation on servo system performance is that 

(a) for a given relative stability, the velocity constant is increased 

(b) for a given relative stability, the velocity constant is decreased 

(c) the bandwidth of the system is increased 

(d) the time response is made faster 

4. If the compensated system shown has a phase margin of 60° at the crossover frequency 
of 1 rad/sec, the value of the gain k is 

5. 

(a) 0.366 

(b) 0.732 

(c) 2.738 

(d) 1.366 

C(s) 

10 
The open-loop transfer function of a unity feedback control system is 3 • The 

(s +5) 

gain margin of the system will be 

(a) 20dB (b) 40dB (c) 60dB (d) 80 dB 

6. The Nyquist plot of the open-loop transfer function. of a feedback control system is 
shown in the given figure. If the open-loop poles and zeros are all located in the left half 
of s-plane, then the number of closed-loop poles in the right half of s-plane will be 

Im 
(a) zero 

GH-plane 

(b) ro=+CXl 

Re 

(c) 2 

(d) 3 
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7. Match List-I (Plot/diagram/chart) with List-II (Characteristics) and select the correct 
answer using the codes given below the Lists : 

List-J List-II 

A. Constant M loci 

B. Constant N loci 

1. 

2. 

Constant gain and phase shift loci of the closed-loop system 

Plot of loop gain with variation of co 

C. Nichol's chart 

D. Nyquist plot 

3. 

4. 

Circles of constant gain for closed-loop transfer function 

Circles of constant phase shaft of closed-loop transfer function 

Codes: 

(a) A 

3 

(c) A 

4 

B C 
4 2 

B._. C 

3 2 

D 

I 

D 

(b) A 

3 

(d) A 

4 

B 

4 

B 

3 

C 

I 

C 

D 

2 

D 

2 

8. Consider the Nyquist diagram for given KG(s) R(s). The transfer function KG(s) R(s) 
has no poles and zeros in the right half of s-plane. If the (-1, jO) point is located first in 
'region I and then in region II, the change in stability of the system will be from 

~ 
(a) unstable to stable 

(b) stable to stable 

(c) unstable to unstable 

(d) stable to unstable 

9. Consider the following Nyquist plots of different control systems: 

Which of these plot(s) represent(s) a stable system? 

Imaginary Imaginary 

1. 2. 
----r--+-o:-----. Real 

-1 
-+-..-/----''1-

0
=----. Real 

3. Imaginary 4. Imaginary 

-+--'---:'1-
0
:-----' Real ---1--+--+-,0=---+ Real 

-1 

(a) 1 alone (b) 2,3 and 4 (c) 1,3and4 (d)1,2and4 
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10. 

11. 

12. 

s 
The transfer function of a certain system is given by G(s) = (1 + s) 

The Nyquist plot of the system is 

Im 

0)=0 
II' 

Im 

(a) 
O)=~ 

---+-----+--~Re (b) -----+--------~----~Re 

------."""'"-------------3>Re Re 
(c) (d) 

O)=ao 

'" 
10 

The polar plot ofG (s) = 2 intersects real axis at 00 = 000, Then, the real part and 
s(s+l) 

000 are respectively given by : 

(a) -5, 1 (b) -2.5, 1 (c) -5, 0.5 (d) -5,2 

For the transfer function G(s) H(s) = 1 the phase cross-over frequency is 
s (s + 1) (s + 0.5) 

(a) 0.5 rad/sec 

(c) 1.732 rad/sec 

(b) 0.707 rad/sec 

(d) 2 rad/sec 

13. The gain phase plot of open loop transfer function of four different systems labelled A, 
B, C and ° are shown in the figure. The correct sequence of the increasing order of 
stability of the four systems will be Gain in dB' B A 

(a) A, B, C, ° 
(b) 0, C, B,A 

-270° 
(c) B,A, 0, C 

(d) B, C, D,A 
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14. 
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For the gain-phase plot shown in the given figure, for the open-loop transfer function 
G (s), gain margin, gain crossover frequency, phase margin and phase crossover 
frequency are respectively 

(a) 2 db, 100 rad/sec, 400 , 10 rad/sec 

(b) 0 db, 10 rad/sec, - 400 , 100 rad/sec 

(c) 2 db, 10 rad/sec, 400
, 100 rad/sec 

(d) - 2 db, 10 rad/sec, - 400 , 100 rad/sec 

IGI 
db 

o 
-2 

-270° -1800 

LG 

-140° -90° 

15. The type and order of the system whose Nyquist-plot is shown in the given figure are 
respectively 1m 

(a) 0, 1 

(b) 1,2 40 

(c) 0,2 

(d) 2, 1 

O)~oo 0)=0 

Re 

16. A unity feedback system has the following open-loop frequency response: 

ro I G Gro) I LI G Gro) I 
2 7.5 - 1180 

3 4.8 - 1300 

4 3.15 - 1400 

5 2.25 - 1500 

6 1.70 - 1570 

8 1.00 - 1700 

10 0.64 - 1800 

The gain margin and phase margin of the system are 

(a) 0 dB, - 1700 (b) 3.86 dB, - 1800 

(c) 0 dB, 100 (d) 3.86 dB, 100 

17. The radius and the centre of M circles are given respectively by 

(a) M~-l' [~~~l'ol M2 (-M ) 
(b) M2 -1' M2 _1,0 
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18. For a given G(s) H(s) the complete polar plot is shown in the given figure. If all Ts are 
positive, then how many poles of the closed-loop system will be there in the RHS ? 

(a) zero 

(b) 

(c) 2 

(d) 3 

P=(-I,jO) --- -----. 

19. The polar plot of the open-loop transfer function of a feedback control system intersects 
the real exis at -2. The gain margin of the system is 

(a) -SdB (b) OdB (c) -6dB (d) 40dB 

20. Which one of the following statements regarding the stability of a feedback control 
system is correct ? 

(a) Gain margin (GM) gives complete information about the relative stability of the 
system 

(b) Phase margin (PM) gives complete information about the relative stability of the system 

(c) GM and PM together gives information about the relative stability of the system 

(d) Gain cross-over and phase cross-over frequencies give the required information 
about the relative stability of the system. 

21. The constant M loci plot is symmetrical with respect to 

(a) real axis and imaginary axis 

(b) M = 1 straight line and the real axis 

( c) M = 1 straight line and the imaginary axis 

(d) M = 1 straight line 
22. The radius of constant-N circle for N = 1 is 

(a) 2 (b) fi (c) 

23. The constant M circle for M = I is the 

1 
(d) fi 

( ) 'gh r I astral t me x = - 2" (b) critical point (- I, jO) 

(c) circle with r = 0.33 (d) circle with r = 0.67 

24. The polar plot of a transfer function passes through the critical point (-1, 0). Gain 
margin is 

(a) zero (b) - 1 dB (c) 1 dB ( d) infinity 
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25. The polar plbt (for positive frequencies) for the open-loop transfer function of a unity 
feedback control system is shown in the given figure 

26. 

27. 

28. 

29. 

The phase margin and the gain margin of the system are respectively 

(a) 150° and 4 1m GUm) 

jl 

(b) 
3 / 

150° and - ,/ -0.25 4 , 
-1 

(c) 30° and 4 Re GUm) 

3 " 
(d) 30° and - -jl 

4 

Which one of the following features is NOT associated with Nichols chart ? 

(a) (0 dB, - 180°) point on Nichols chart represents the critical point (-1 + jO) 

(b) It is symmetric about -180° 

(c) The M loci are centred about (0 dB, - 180°) point 

(d) The frequency at the intersection of the G(jro) locus and M = +3 dB locus gives 
bandwidth of the closed-loop system. 

Which one of the following equations represents the constant magnitude locus in 
G-plane for M = 1 ? {x-axis is Re G (jro) and y-axis is 1m G (jro)} 

(a) x=-0.5 (b) x=O 

(c) x2 + y2 = 1 (d) (x + Ii + y2 = 1 

K 
The open loop transfer function of a system is G(s) H(s) = ------­

(l + s) (l + 2s) (l + 3s) 

The phase crossover frequency roc is 

(a) .J2 (b) (c) zero (d) fj 
Nyquist plot shown in the given figure is a type 

1m 

(a) zero system 

" (b) one system " , 
\ 
I Re 

(c) two system 

(d) three system 
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30. The open loop transfer function of a unity feedback control system is given as 

1 

31. 

32. 

33. 

G(s) = s(l+sT\)(1+sT
2

) 

The phase crossover frequency and the gain margin are, respectively, 

I T\ + T2 T +T 
(a) and TT (b) JT\Tz and ~T 2 

JT\ T2 \ 2 \ 2 

TT 
(d) JT\T2 and \ 2 

T\ +T2 

1 
A constant N-circ1e having centre at (- "2 + jO) in the G-plane, represents the phase 

angle equal to 

(a) 180° (b) 90° (c) 45° (d) 0° 

The constant M-circle represented by the equation x2 + 2.25x + y2 -= - 1.125 where 
x = Re [G G(()] and y = 1m [G G(()] has the value of M equal to , , 
(a) 1 (b) 2 (c) 3 (d) 4 

The advantages of Nyquist stability test ar~ 

(a) it guides in stabilising an unstable system 

(b) it enables to predict closed loop stability from open loop results 

(c) is is applicable to experimental results of frequency response of open loop system 

(d) all of the above 

34. The Nyquist locus of a transfer function G(s), H(s) = ~ is given in Fig. 1. 
l+sT\ 

1m 1m 

())=oo ())=Q 
--\------r-- Re 

K 

Fig. I. 

())=oo ())=Q 
~~-----~~Re 

K 

Fig. II. 

The locus is modified as shown is Fig. II on addition of pole or poles to the original 
G( s) H( s) Then, the modified transfer function of the modified locus is 

K 
(a) G(s) H(s) = --­

s(1 + sT\) 

(c) G(s) H(s) = ___ K __ 
(1 + sT\)(l + sT2) 

(b) G(s) H(s) = __ K __ 
(1 + sTj )(1 + sT2 ) 

K 
(d) G(s) H(s) = ------­

(1 + sT\)(1 + sT2)(1 + sT3) 
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35. The constant M-circ1es corresponding to the magnitude (M) of the closed-loop transfer 
of linear system for values of M greater than one lie in the G-plane and to the 

(a) right of the M = 1 line (b) left of the M = 1 line 

(c) upper side of the M = + j 1 line (d) lower side of the m = -j 1 line 

36. The Nyquist plot of servo system is shown in the Figure-I. The root loci for the system 
would be 

(a) 

----------~~----~Re 

Increasing 
00 

joo 

Figure-I 

(b) 
joo 

(c) (d) None of the drawn plot of (a), (b), (c) of 

double pole 
----~~--~~-----.cr at origin 

the question 

37. Consider the following Nyquist plot of a open loop stable system: 
The feedback system will be stable if and only if the critical point lies in the region 

(a) I (OP) 
00 < 0 

~~ 

(b) II (PQ) 
N Real 

(c) III (QR) 

(d) None of these -
00 = 0+ 
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Chapter 8 

1. The gain cross-over frequency and bandwidth of a control system are IDeu and IDbu 
respectively. A phase-lag network is employed for compensating the system. If the gain 
cross-over frequency and band width of the compensated system are IDee and IDbe 
respectively, then 

(a) IDee < IDeu ; IDbe < IDbu 

(c) IDee < IDeu ; IDbe > IDbu 

(b) IDee> IDeu ; IDbe < IDbu 

(d) IDee> IDeu ; IDbe > IDbu 

2. A portion of the polar plot of an open-loop transfer function is shown in the given figure 

The phase margin and gain margin will be respectively 

(a) 30° and 0.75 
ImG(s)H(s) 

, , 
(b) 60° and 0.375 

, , , , , 
-0.75 \ 

(c) 60° and 0.375 -1 

- 0.375 
ReG(s)H(s) 

\ 
1 

, 

(d) 60° and 0.75 

3. If the transfer function of a phase lead compensator is s + a and that of a lag 
s+b 

compensator is s + p then which one of the following sets of conditions must be 
s+q 

satisfied? 

(a) a> b and p > q 

(c) a < b and p < q 

(b) a > band p < q 

(d) a < band p > q 

4. The phase lead compensation is used to 

5. 

(a) increase rise time and decrease overshoot 

(b) decrease both rise time and overshoot 

( c ) increase both rise time and overshoot 

(d) decrease rise time and increase overshoot 

(O.5s + 1) . 
Maximum phase-lead of the compensator O(s) = ( )' IS 

0.05s + 1 

(a) 52 deg at 4 rad/sec 

(c) 55 deg at 12 rad/sec 

(b) 52 deg at 10 rad/sec 

(d) None of the answer is correct 
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6. Match List I with List II and select the correct answer using the codes given below the 
lists: 

List I List II 

A. Transfer function of a lag network l. L-I (51 - Atl 

B. State-transition matrix for X = AX 2. 
(s + Z) Z 
(s + P)' P > 1 

C. DC amplifier transfer function 3. k 

D. Steady state error of type-l system for step input 4. L -I (sA - 1)-1 

5. 
s+z z 
-- , - < 1 
s+p P 

6. K(1 + sT) 

7. zero 

8. ao 

Codes: A B C D 

(a) 1 3 4 5 

(b) 2 3 1 8 

(c) 5 4 6 8 • (d) 2 3 7 

7. Match List-I with List-II and select the correct answer using the codes given below the 
lists: 

List-I List-II 

A. Phase lag controller 1. Improvement in transient response 

B. Addition of zero at origin 2. Reduction in steady-state error 

C. Derivative output compensation 3. Reduction in settling time 

D. Derivative error compensation 4. Increase in damping constant. 

Codes: 

A B C D 

(a) 4 3 2 

(b) 2 3 4 

(c) 4 3 2 

(d) 2 3 4 
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8. 
10(1+.04s) 

A phase-lead compensator has the transfer function Gc(s) = (l + .01s) 

The maximum phase-angle lead provided by this compensator will occur at a frequency 

rom equal to 

(a) 50 rad/sec (b) 25 rad/sec (c) 10 rad/sec (d) 4 rad/sec 

9. Match List I with List II and select the correct answer using codes given below the lists: 

List I (Circuit diagram) List II (Name) 

A. : rWlv~ ~ : l. Lag network 

0 WIv 
B. I 

0 
2. Lead network 

0 =r: 0 

o----j~ 

+: f c. 3. Lag-lead network 

0 

0 c!J 0 

i D. 4. Lead-lag network 
0 -r 0 

Codes: 

(a) A B C D (b) A B C D 

2 3 4 2 3 4 

(c) A B C D (d) A B C D 

2 4 3 2 4 3 
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10. The root-locus plot for an uncompensated unstable system is shown in the given figure. 

11. 

The system is to be compensated by a compensating zero. The most desirable location 

of the compensating zero would be the point marked, 

(a) A 

(b) B 

(c) C 

(d) 0 

A· B C 

1+ O.l2s 
The transfer function of a lead conpensator is Ge(s) = 00 

1+ . 4s 

D 

The maximum phase shift that can be obtained from this compensator is 

(a) 60° (b) 45° (c) 30° (d) 15° 

12. The transfer function of a phase lead compensator is given by 1+ aTs where a > I and 
I+Ts 

T> O. The maximum phase shift provided by such a compensator is 

(a) tan- l -- (b) tan- l -- (c) sm- l -- (d) sm-l --(
a+l) (a-I). (a+l) . (a-I) 
a-I a+1 a-I a+1 

13. Indicate which one of the following transfer functions represents phase lead compensator? 

s+1 
(a) -

s+2 
(b) 6s+3 

6s+2 
(c) s+5 

3s+2 
(d) s +8 

s2+5s+6 

14. The maximum phase shift that can be provided by a lead compensator with transfer 

15. 

I +6s 
function, G (s) = 1+ 2s 

(a) 15° (b) 30° (c) 45° (d) 60° 

1+0. Ts The transfer function of a compensating network is of the form ---
(1 +Ts) 

If this is a phase-lag network the value of a. should be 

(a) exactly equal to 0 (b) between 0 and I 

(c) exactly equtal to I (d) greater than I 
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16. For the given phase-lead network, the maximum possible phase lead is 

(a) sin-1 (1/3) IF 

(b) 30° 

~ : ~wn (c) 45° 

(d) 60° 
17. When phase-lag compensation is used in a system, gain crossover frequency, band 

width and undamped frequency are respectively 

(a) increased, increased, increased (b) increased, increased, decreased 

( c ) increased, decreased, decreased (d) decreased, decreased, decreased 

18. A lag compensator is basically a 

(a) high pass filter (b) band pass filter 

(c) low pass filter (d) band elimination filter 

19. Which one of the following is a phase-lead compensation network? 

(a) O_-----'cC-J~--"----.--_O (b) 
[ 

o..--_-.l..-f ~o 

(c) (d) 

O _________________ l[L-__ -OO 

1 
s+-

20. The phase-lead network function Gc (s) = -t, where a < 1 would provide 

maximum phase-lead at a frequency of 

1 
(a) -

T 
1 

(b) -
aT 

s+-

1 
(c) -

T.Ja 

aT 

1 
(d) -aJT 
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21. 
5 (1 + O.3s) 

The compensator G (s) = ---'----'-- would provide a maximum phase shift of 
c 1+0.ls 

(a) 20° (b) 30° (c) 45° (d) 60° 

22. For the given network, the maximum phase lead ~m ofVo with respect to Vi is 

(a) sin-1 (~J 
2R2 

Rj 

(b) sin-1 ( R
j 

) 

r 
C~ 

!R2 1 R j +2R2 
Cj 

(c) sin-1 

(R j :~RJ 
(d) sin-1 (2~jCJ 

23. The transfer function of a phase lead network can be written as 

24. 

(a) 
l+sT 

~ > 1 (b) 
a (1 +sT) 

1 + s~T ' l+saT 
, a<1 

(c) ~(1 +sT) . 
~ < 1 (d) 

(1 + sT) 
a>1 

l+s~+T ' a(l+saT) , 

Which one of the following compensations is adopted for improving transient response 
of a negative unity feedback system ? 

(a) Phase lead compensation 

(b) Phase lag compensation 

(c) Gain compensation 

(d) Both phase lag compensation and gain compensation 

25. For a given gain constant K, the phase-lead compensator 

(a) reduces the slope of the magnitude curve in the entire range of frequency 

(b) decreases the gain cross-over frequency 

(c) reduces the phase margin 

(d) reduces the resonance peak Mp 
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26. Consider the following statements: 

In a feedback control system, lead compensator 

1. increases the margin of stability 

2. speeds up transient response 

3. does not affect the system error constant 

Of these statements 

(a) 2 and 3 are correct (b) 1 and 2 are correct 

(c) 1 and 3 are correct (d) 1, 2 and 3 are correct 

27. A phase-lag compenstion will 

28. 

(a) improve relative stability 

( c) increase bandwidth 

(b) increase the speed of response 

(d) increase overshoot 

. 4(1+0.15s) 
Maxlmum phase lead of is equal to 

(l + 0.05s) 

(a) 15° (b) 30° (c) 45° (d) 60° 

Chapter 9 

1. The state transition matrix for the system X = AX with initial state X (0) is 

(a) (sl - Atl 

(b) eAt X (0) 

(c) Laplace inverse of [(sl - Atl] 

(d) Laplace inverse of [(sl - Atl X (0)] 

465 

2. For the system X = [~ ~] X + [~] u; y = [4 0] X, with u as unit impulse and with 

3. 

zero initial state the output, y becomes : 

(a) 2e2t (b) 4e2t (c) 2e4t 

. ° ° The eigenvalues of the system represented by X = 

[

0 1 

° ° 
° ° 

(a) 0,0,0,0 (b) 1,1,1,1 (c) 0,0,0,-1 

(d) 4e4t 

(d) 1,0,0,0 
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4. Given the homogeneous state-space equation X = [- 3 1] X the steady state value ° -2 

5. 

ofxss = lim x (t), given the initial state value ofx (0) = [10 
t~<X) 

-lOf, is 

(a) xss = [~] [
-10] 

(c) -10 

Consider the system X (t) = [~ ~] X(t) + [::J U(t); y (t) = [d l d2] X (t) 

The conditions for complete state controllability and complete observability is 

(a) d l =1= 0, b2 =1= 0, bi and d2 can be anything 

(b) dl > 0, d2 > 0, b i and b2 can be anything 

(c) b i =1= 0, b2 =1= 0, d l and dz can be anything 

(d) b i > 0, b2 > 0, b2 and d l can be anything 

6. The transfer function of a multi-input multi-output system, with the state-space 
representation of 

X =AX+BU Y=CX+DU 

where X represents the state, Y the output and U the input vector, will be given by 

(a) C(sI _Ati B (b) C(sI -Atl B + 0 

(c) (sl - Ati B + 0 (d) (sl _Ati B + 0 

7. The state variable description of a single-input single-output linear system is given by 

K = A X(t) + Q u (t) 

yet) = £ X (t) 

where A = G ~ l b = [~] and c = [1, -1] 

The system is 

(a) controllable and observable 

(b) controllable but unobservable 

(c) uncontrollable but observable 

(d) uncontrollble and unobservable 
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8. Which of the following properties are associated with the state transition matrix ~ (t) ? 

1. ~ (-t) = ~-l (t) 2. ~ (t/t2) = ~ (t1). ~-l (t2) 

3. ~ (t1 - tz) = ~ (-t2)· ~ (t1) 

Select the correct answer using the codes given below : 

Codes: 

(a) 1, 2 and 3 (b) 1 and 2 (c) 2 and 3 (d) I and 3 

9. The second order system X = AX has A = [~I ~ I] 

The values of its damping factor 1; and natural frequency ron are respectively 

(a) I and I (b) 0.5 and I (c) 0.707 and 2 (d) I and 2 

10. A liner system is described by the state equations, [:J = [~ ~] [:J + [~] r 

c = Xz 
Where r and c are the input and output respectively. The transfer function is : 

(a) 1 /(s + 1) (b) 1 /(s + 1)2 (c) 1 /(s - 1) (d) 1 /(s - 1)2 

11. The transfer function of a certain system is Yes) = 4 3 2 . 
U(s) s +5s +7s +6s+3 

The A,.e. matrix pair of the equivalent state-space model will be 

[I 

1 0 

jJ [;1 [i3 

1 0 

jJ [;1 
0 1 0 1 

(a) 
0 0 

(b) 
0 0 

-6 -7 -5 -6 

[I 
1 0 

jJ [~I [J3 

0 0 

II [~I 0 1 1 0 
(c) 

0 0 
(d) 

0 

-7 -6 -6 -7 
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12. The state equation of a dynamic system is given by X (t) = A X(t) 

-1 1 0 0 0 

0 -1 0 0 

A= 0 0 -1 0 0 

0 0 0 -3 4 
0 0 0 -4 -3 

The eigen values of the system would be 

(a) real non-repeated only (b) real non-repeated and complex 

( c ) real repeated (d) real repeated and complex 

13. The value of A matrix in X = AX for the system described by the differential equation 

y + 2 y + 3y = 0 form is 

14. The state and output equations of a system are as under: 

[
XI (t)] [ 0 1] [XI (t)] [0] State equation:. = + u(t) 
x2(t) -1 - 2 x2 (t) 1 

[
XI (t)] 

Output equation: C (t) = [1 1] X2(t) 

The system is 

(a) neither state controllable nor output controllable 

(b) state controllable but not output controllable 

(c) output controllable but not state controllable 

(d) both state controllable and output controllable 

15. The minimum number of states necessary to describe the network shown in the figure 
in a state variable form is 

(a) 2 
50 lllF lOmH 

0 

~I I 
(b) 3 

In In 
(c) 4 

51lF 

(d) 6 
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16. A system is represented by y + 2 Y + 5 y + 6y = 5x 

If state variables are xl = y, x2 = y and x3 = y, then the coefficient matrix 'A' will be 

[
0 I 0] [0 I 0] [0 

(a) ° ° I (b) ° ° I (c) ° 
-6 -5 -2 -2 -5 -6 -6 

~ ~ 1 (d) [~ ° ~ 1 
-5 -2 -2 -5 -6 

17. The state equation of a linear system is given by X = AX + BU, where 

A = [ _0 2 ~] and B = [~] 
The state transition matrix of the system is 

(aJ [e;' e~' 1 [
sin 2t cos 2t] [ cos 2t sin 2t] 

( c ) _ cos 2t sin 2t (d) - sin 2t cos 2t 

18. The control system shown in the given figure is represented by the equation 

[Yl (S)] = [Mat~ 'G'] [Ul (S)] 
Y2(S) u2(s) 

The matrix G is 

(aJ [! -ll ~J [! ~~l 
(c) [(,:1) (S~I)21 (d) [(S:I) -(S~IY 

° ° ---(s+l) (s+l) 

19. The state diagram of a system is shown in the given figure: 

The system is 

I lis Xz 
• • • 

(a) controllable and observable (b) controllable but not observable 

(c) observable but not controllable (d) neither controllable nor observable 
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20. Match List-I (Matrix) with List-II (Dimensions) for the state equations: X (t) = PX(t) 
+ QU(t) and yet) = RX(t) + SUet) and select the correct answer using the codes given 
below the lists : 

List-J List-II 

A. P 1. (n x p) 

B. Q 2. (q x n) 

C. R 3. (n x n) 

D. S 4. (q x p) 

Codes: 

(a) A B C D (b) A B C D 

3 4 2 3 2 4 

(c) A B C D (d) A B C D 

3 4 2 3 2 4 

21. The state-variable description of a linear autonomous system is X = AX where X is a 

state vector and A = [~ ~ ]. 
The poles of the system are located at 

(a) -2 and + 2 (b) -2j and + 2j (c) -2 and-2 (d) + 2 and +2. 

22. 
[ 

s+6 

. ... S2 +6s+5 
ConsIder the state transItIOn matnx : <I>(s) = _ 5 

s2+6s+5 

The eigenvalues of the system are 

(a) ° and -6 (b) ° and +6 (c) 1 and-5 (d) -1 and-5 

23. A particular control system is described by the following state equations: 

X = [ ° 1 ] X + [0] U and Y = [2 O]X. The transfer function of this system is : 
-2 -3 1 

yes) yes) 2 
(a) --= (b) = 

U(s) 2S2 +3s+1 U(s) 2S2 +3s+1 

(c) 
Yes) 1 

(d) 
Yes) 2 

--= = 
U(s) S2 +3s+2 U(s) s2+3s+2 
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24. A transfer function of a control system does not have pole-zero cancellation. Which one 
of the following statement is true ? 

(a) System is neither controllable nor observable 

(b) System is completely controllable and observable 

(c) System is observable but uncontrollable 

(d) System is controllable but unobservable. 
25. The state-space representation in phase-variable form for the transfer function 

2s+ 1 
G(s) = s2+7s+9 is 

(a) x= [_°9 _\] x+ [~] u;y= [1 2]x 

(b) x = [_19 _°
7

] x + [~] u; y = [0 1 ]x 

(c) x = [-09 
_°7] x + [~] u; y = [2 O]x 

(d) x = [~ -0
7

] x + [~] u; y = [1 2]x 

26. Let X = [~ ~] X + [~] U 

Y = [b 0] X 

where b is an unknown constant. This system is 

(a) observable for all values ofb 

(b) unobservable for all values ofb 

(c) observable for all non-zero valuesof b 

(d) unobservable for all non-zero values of b 

27. The state representation of a second order system is x I = -xI + u, X 2 = XI -2 Xz + u 

Consider the following statements regarding the above system : 

1. The system is completely state controllable. 

2. If XI is the output, then the system is completely output controllable. 

3. If x2 is the output, then the system is completely output controllable. 

Of these statements 

(a) 1, 2 and 3 are correct 

( c ) 2 and 3 are correct 

(b) 1 and 2 are correct 

(d) 1 and 3 are correct 
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28. A state variable system 

X(t)=[~ _~]X(t)+[~]u 
with initial condition X(O) = [-I 3]T and a unit step input has the state transition matrix. 

[~ 1 (_' _" j 
[: 

1 ( _, _"j - e -e - e -e '3 (a) 3 (b) 
e-t e-3t 

(e) [~ ~(1-e-"j 
e-3t 

(d) [ 1 1-e -, 1 
o e-3t 

29. Consider the following properties attributed to state model of a system: 

30. 

1. State model is unique. 

2. State model can be derived from the system transfer function. 

3. State model can be derived for time variant systems. 

Of these statements : 

(a) 1, 2 and 3 are correct 

( c ) 2 and 3 are correct 

(b) 1 and 2 are correct 

(d) 1 and 3 are correct 

[XI] [2 0] [Xx21 ] + [11] u A system is described by the state equation x
2 

= 0 2 

The state transition matrix of the system is 

(a) 

(c) 

[
e

0

2t 

[
e

0

2t 

(b) [ e;' e~' 1 

(d) [ e;' e~" 1 
31. For the system X = [~ ~] X + [~] u, which of the following statements is true ? 

(a) the system is controllable but unstable 

(b) the system is uncontrollable and unstable 

(c) the system is controllable and stable 

(d) the system is uncontrollable and stable. 
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32. A linear time invariant system is described by the following dynamic equation 

X = AX + Bu y = cX 
A=[_02 _13]. B=[~]. C=[l 1] 

The system is 

(a) Both controllable and observable (b) Controllable but unobservable 

(c) Observable but not controllable (d) Both unobservable and uncontrollable 

33. Consider the single input, single output system with its state variable representation: 

X= r~l _°2 ~ lJI X+ r~l u;y= [1 ° 2]X 
° ° -3 ° 

The system is 

(a) neither controllable nor observable 

(c) uncontrollable but observable 

(b) controllable but not observable 

(d) both controllable and observable 

34. Consider the closed-loop system shown in the given figure. The state model of the 
system is 

y = [1 0] [::J 

[ ~l] = [ ° 1] [Xl] + [0] u (d) x
2 

_p -(l x
2 

1 

Y = [0 1] [:J 
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35. The zero input response of a system, 

. [1 0] 
X = 1 1 X with X(O) = [1 

[tet] 
(a) t (b) [~, 1 (e) [;' 1 (d) [:e' 1 

36. A second order system starts with an initial condition of [ ~] without any external input. 

The state transition matrix for the system is given by 

The state of the system at t = 1 sec is given by 

[
O.13S] [0.271] 

(a) 0.368 (b) 1.1 (d) [0. US] 
1.1 

Miscellaneous 

1. For the function X(s) = s(s + 1)3 (s + 2) , the residues associated with the simple poles at 

s = ° and s = -2 are respectively 

1 1 
(a) - and -

2 2 
(b) 1 and 1 (c) -1 and-l 

1 1 
(d) - - and -

2 2 
2. The Laplace transform of a transportation lag of S seconds is 

(a) exp (-Ss) (b) exp (Ss) 
1 

(c) s+S 

3. A unit impulse function on differentiation results in 

(a) unit doublet (b) unittriplet 

(d) exp ( -S6) 

(c) unit parabolic function (d) unit ramp function 

4. 
e-at _ e-bt 

Laplace transform of is 
b-a 

(a) 
(s+a)(s-b) 

1 
(b) (s -a)(s + b) 

1 

-(c) 
(s-a)(s- b) 

(d) 
(s + a)(s + b) 
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5. Match List-! with List-II and select the correct answer by using the Codes given below 
the lists: 

List-J List-II 

(Function) (Laplace Transfonn) 

A. sin rot 1. rol (s2 + ro2) 

B. cos rot 2. sl (s2 + ro2) 

C. sinh rot 3. rol (S2 _ ro2) 

D. cosh rot 4. sl (s2 _ ro2) 

Codes: 

(a) A B C D (c) A B C D 

2 3 4 3 4 2 

(b) A B C D (d) A B C D 

2 4 3 4 2 3 

6. Match List-! (System) with List-II (Transfer function) and select the correct answer 
using the codes given below the Lists : 

List-! List-II 

A. AC servomotor 1. 
s+z 
- (z<p) 
s+p 

B. DC amplifier 2. 
l+TJs IT (Tl < T2) 
+ 2S 

C. Lead network 3. K 

K 
D. Lag network 4. 

s(l + Ts) 

Codes: 

(a) A B C D (b) A B C D 

3 4 1 2 4 3 1 2 

(c) A B C D (d) A B C D 

3 4 2 4 3 2 

7. The output of a linear, time invariant control system is c (t) for a certain input r (t). If 
r (t) is modified by passing it through a block whose transfer function is e-5 and then 
applied to the system, the modified output of the system would be 

c (t) 
(a) 1 + e t 

c (t) 
(b) -1 -t -e 

(c) c(t-1)u(t-l) (d) c (t) u (t - 1) 
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8. Match List-I (Mathematical expression) with List-II (Nomenclature) and selectthe correct 
answer using the codes given below the lists : 

I.ist-I I.ist-II 

co 

A. I h (t - or) X (or) d or 
0 

co 

B. I x (t) e-st d t 
0 

co 

c. I x (t) e-jrot d t 
0 

co 

D. I 8 (t) d t 
0 

Codes: 

(a) A B C 

3 4 

(c) A B C 

2 3 4 

D 

2 

D 

1. Step function 

2. Convolution integral 

3. Fourier transform 

4. Laplace transform 

(b) A 

(d) A 

2 

B 

4 

B 

4 

C 

3 

C 

3 

D 

2 

D 

1 
9. Match List I with List II and select the correct answer using the codes given below the 

lists: 

Ust I Ust II 

(Controller) (Suitable application) 

A. On-off 1. Steam kettle with different time settings 

B. Proportional 2. Elevator 

C. Cascade 3. Robot positioning 

D. Digital 4. Domestic refrigerator 

Codes: 

A B C D 

(a) 4 2 3 1 

(b) 2 4 3 

(c) 3 1 4 2 

(d) 4 2 1 3 
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10. Match List-I (Roots in the's' plane) with List-II (Impulse response) and select the 

correct answer using the codes given below the lists : 

11. 

List-I List-II 

(A) A single root at the origin 1. h(t) ~. t 

(B) A single root on the negative real axis 2. h(t) 
rL. ___ •• t 

(C) Two imaginary roots 3. h(t) tc .t 
(D) Two complex roots in the right half plane 4. h(t) 

~t 
5. h(t) 

~AI\I\C VVV\j 

Codes: 

A B C D A B C D 

(a) 2 5 4 (b) 3 2 4 5 

A B C D A B C D 

(c) 3 2 5 4 (d) 2 1 4 5 

The correct sequence of steps needed to improve system stability is 

(a) insert derivative action, use negative feedback, reduce gain 

(b) reduce gain, use negative feedback, insert derivative action 

(c) reduce gain, insert derivative action, use negative feedback 

(d) use negative feedback, reduce gain, insert derivative action 

• t 

12. Consider the vectors drawn from the poles and zero at j 0) = j 1 on the imaginary axis as 
shown in the given figure. The transfer function G G 1) is given by 

jro 
1 j2 (a) - LOo 
2 jI 

(b) 2.7 L31° Re 
0 

(c) 2 L45° 

(d) 2 L-67.4° 
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13. The effect of adding poles and zeros can be determined quickly by 

(a) Nicholas chart (b) Nyquist plot 

(c) Bode plot (d) Root locus 

14. Match List-I with List-II and select the correct answer by using the codes given below 

the lists: 

List-I (Roots in the's' plane) List-II (Impulse Response) 

A. Two imaginary roots 1.~ 
B. Two complex roots in the right half plane 2. rv\; 
C. A single root on the negative real axis 3. rifu 
D. A single root at the origin 4.1--1 -

Codes: 

(a) A B C D (b) A B C D 

2 3 4 2 3 4 

(c) A B C D d) A B C D 

4· 3 2 3 2 4 

15. In control systems, we have 

I. Nyquist criterion II. Bode plot 

III. Root Locus plot IV. Routh Hurwitz criterion 

Which of the above are in time domain ? 

(a) I and II only (b) II and IV only 

(c) I and III only (d) III and IV only 
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16. 
600 

A system with transfer function, can be approximated by the 
s(s + 1) (s + 15) (s + 20) 

system 

(a) 
s(s + 1) 

2 
(b) s(s + 20) 

40 
(c) 

s(s + 15) (s + 20) 

600 
(d) 

(s+I)(s+20) 

40 

17. 1. Nyquist criterion is in frequency domain 

2. Bode Plot is in frequency domain 

3. Root locus plot is in time domain 

4. Routh Huwitz's criterion is in time domain. 

(a) 1,2, and 3 are correct (b) 2,3 and 4 are correct 

(c) 1 and 2 are correct (d) all four are correct 

18. Match List I (Scientist) with List II (Contribution in the area of) and select the correct 
answer using the codes given below the Lists : 

List I List II 

A. Bode 1. Asymptotic plots 

B. Evans 2. Polar plots 

C. Nyquist 3. Root-locus technique 

4. Constant M and N plots 

Codes: 

(a) A B C 

4 2 

(b) A B C 

2 3 4 

(c) A B C 

3 4 

(d) A B C 

3 2 
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19. The ,,:··~tem shown in the given figure relates to temperature control of air flow. 

Equallon of heat exchanger is 

dT 
10 -A +T =u 

dt A 

Temperature sensor equation is 

The closed-loop transfer function T A (s) of the system is 
Tr (s) 

Output air 
temperature 

(a) 4s + 2 
20S2 +12s+3 

(b) 4s+ 2 
20S2 + 12s + 1 

(c) 2 
20S2 + 12s + 1 

2 
(d) 20s2+12s+3 

20. The state equation of a system is X = [_ ~O _19] X + [~] u 

The poles of this system are located at 

(a) - 1, - 9 (b) - 1, - 20 (c) - 4, - 5 (d) -9,-20 

21. Given the relationship between the input u(t) and the output yet) to be 

t 

Y (t) = f (2 + t - .) e-3(t-t) u (.) d. the transfer function Y(s)lU(s) is 
o 

2e-2s 

(a) 
s+3 

s+2 
(b) (S+3)2 

2s+5 
(c) 

s+3 

-~-

2s+7 
(d) (S+3)2 
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Chapter 1 

1. (d) 

7. (c) 

Chapter 2 

1. (a) 

7. (b) 

13. (b) 

19. (b) 

25. (a) 

31. (c) 

37. (d) 

43. (c) 

49. (a) 

55. (d) 

61. (c) 

67. (d) 

73. (a) 

79. (a) 

2. (d) 

2. (a) 

8. (a) 

14. (c) 

20. (b) 

26. (b) 

32. (b) 

38. (c) 

44. (b) 

50. (b) 

56. (b) 

62. (d) 

68. (c) 

74. (b) 

80. (c) 

Answers to MCQs from Competitive Examinations 

3. (a) 4. (b) 5. (b) 6. (c) 

3. (c) 4. (d) 5. (b) 6. (b) 

9. (b) 10. (a) 11. (c) 12. (b) 

15. (a) 16. (a) 17. (c) 18. (c) 

21. (d) 22. (a) 23. (a) 24. (b) 

27. (b) 28. (d) 29. (a) 30. (c) 

33. (c) 34. (a) 35. (a) 36. (d) 

39. (a) 40. (b) 41. (d) 42. (b) 

45. (c) 46. (a) 47. (c) 48. (a) 

51. (a) 52. (a) 53. (c) 54. (b) 

57. (d) 58. (b) 59. (c) 60. (c) 

63. (c) 64. (c) 65. (a) 66. (a) 

69. (d) 70. (b) 71. (d) 72. (b) 

75. (a) 76. (c) 77. (a) 78. (c) 

81. (d) 82. (c) 83. (b) 84. (d) 
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Chapter 3 

1. (a) 2. (b) 3. (c) 4. (c) 5. (d) 6. (c) 

7. (a) 8. (c) 9. (b) 10. (b) II. (d) 12. (c) 

13. (a) 14. (d) 15. (c) 16. (a) 17. (c) 18. (b) 

19. (c) 20. (b) 2I. (d) 22. (b) 23. (d) 24. (a) 

25. (b) 26. (c) 27. (b) 28. (a) 29. (a) 30. (b) 

3l. (a) 32. (a) 33. (d) 34. (d) 35. (a) 36. (d) 

37. (d) 38. (c) 39. (d) 40. (b) 41. (d) 42. (c) 

43. (b) 44. (a) 45. (a) 46. (b) 47. (c) 48. (a) 

49. (b) 50. (c) 51. (c) 52. (d) 53. (c) 54. (c) 

55. (c) 56. (b) 57. (d) 58. (a) 59. (a) 60. (d) 

61. (a) 62. (c) 63. (d) 64. (b) 65. (d) 66. (a) 

67. (b) 68. (d) 69. (d) 70. (c) 7l. (b) 72. (b) 

73. (b) 74. (d) 75. (c) 76. (d) 77. (a) 78. (b) 

79. (b) 80. (c) 81. (d) 82. (c) 

Chapter 4 

l. (b) 2. (c) 3. (c) 4. (b) 5. (c) 6. (b) 

7. (c) 8. (d) 9. (b) 10. (a) 11. (d) 12. (c) 

l3. (c) 14. (c) 15. (c) 16. (b) 17. (c) 18. (d) 

19. (b) 20. (d) 2l. (b) 22. (b) 23. (d) 24. (d) 

25. (a) 26. (c) 27. (b) 28. (c) 29. (c) 30. (c) 

31. (b) 32. (c) 33. (b) 34. (c) 35. (a) 36. (c) 

37. (c) 38. (b) 39. (b) 
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Chapter 5 

1. (b) 2. (c) 3. (b) 4. (b) 5. (c) 6. (c) 

7. (d) 8. (d) 9. (a) 10. (c) 11. (d) 12. (c) 

13. (b) 14. (c) 15. (a) 16. (d) 17. (d) 18. (b) 

19. (d) 20. (c) 21. (a) 22. (d) 23. (b) 24. (c) 

25. (b) 26. (c) 27. (d) 28. (a) 29. (d) 30. (a) 

Chapter 6 

1. (a) 2. (d) 3. (d) 4. (c) 5. (c) 6. (c) 

7. (d) 8. (d) 9. (c) 10. (b) 11. (b) 12. (d) 

13. (c) 14. (a) 15. (a) 16. (b) 17. (d) 18. (d) 

19. (a) 20. (c) 21. (b) 22. (b) 23. (c) 24. (a) 

25. (a) 26. (d) 27. (d) 28. (b) 29. (a) 30. (d) 

31. (d) 32. (a) 33. (d) 34. (d) 

Chapter 7 

1. (d) 2. (b) 3. (a) 4. (d) 5. (b) 6. (c) 

7. (b) 8. (d) 9. (d) 10. (b) 11. (a) 12. (b) 

13. (c) 14. (c) 15. (c) 16. (d) 17. (a) 18. (a) 

19. (c) 20. (c) 21. (b) 22. (d) 23. (a) 24. (a) 

25. (a) 26. (d) 27. (a) 28. (b) 29. (b) 30. (a) 

31. (b) 32. (c) 33. (d) 34. (b) 35. (b) 36. (b) 

37. (b) 
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Chapter 8 

1. (a) 2. (d) 

7. (b) 8. (a) 

13. (a) 14. (b) 

19. (a) 20. (e) 

25. (d) 26. (b) 

Chapter 9 

1. (e) 2. (b) 

7. (b) 8. (d) 

13. (d) 14. (d) 

19. (a) 20. (d) 

25. (a) 26. (e) 

31. (b) 32. (b) 

Miscellaneous 

1. (a) 

7. (e) 

13. (b) 

19. (a) 

2. (a) 

8. (d) 

14. (a) 

20. (e) 

3. (d) 

9. (d) 

15. (b) 

21. (b) 

27. (a) 

3. (d) 

9. (b) 

, 15. (b) 

21. (a) 

27. (e) 

33. (e) 

3. (a) 

9. (d) 

15. (d) 

21. (d) 

4. (b) 

10. (e) 

16. (b) 

22. (b) 

28. (b) 

4. (a) 

10. (e) 

16. (a) 

22. (d) 

28. (e) 

34. (b) 

4. (d) 

10. (d) 

16. (a) 

5. (d) 

11. (e) 

17. (d) 

23. (b) 

5. (a) 

11. (a) 

17. (d) 

23. (d) 

29. (e) 

35. (a) 

5. (a) 

11. (d) 

17. (d) 

485 

6. (d) 

12. (d) 

18. (e) 

24. (a) 

6. (b) 

12. (d) 

18. (e) 

24. (b) 

30. (a) 

36. (b) 

6. (b) 

12. (a) 

18. (d) 
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